Derleme
BibTex RIS Kaynak Göster

Usage of Some Crystals and Amorphous Materials in Radiation Physics Studies

Yıl 2022, Cilt: 5 Sayı: 1, 63 - 75, 30.06.2022

Öz

In this review article, studies of some amorphous and crystals have been introduced and furthermore, lattice of crystal and its own structure which is related with crystallography has been explained upon the perspective of solid state physics. Crystal growth methods hav been shown.writer of this review paper would like to carry out a new study on amorphous material such as obsidian will be a new candidate for radiation thermoluminescence dosimetry (TLD) as dosimeter.Obsidian has been used in a radiation protection study and in this article there is a prove that obsidian can be a good material for radiation detectors. Because of that reason obsidian will be studied by writer of this review article.

Destekleyen Kurum

Kuurm yok

Proje Numarası

Proje değil

Teşekkür

------

Kaynakça

  • Bos A.J.J., 2007, Theory of thermoluminescence, Delft University of Technology, Faculty of Applied Sciences, 2629 JB Delft, The Netherlands.
  • [2] McKeever S.W.S, 2001, Optically stimulated luminescence Dosimetry, Nuclear Instruments and Methods in Pyhsics Research B 184, Pages 29-54, 2001.
  • [3] V.V Antonov_Romanksi, I.F. Keirum- Marcus, M.S. Porishina, Z.A. Trapeznikova in: Conference of the Academy od Science of the USSR on the peaceful Uses of Atomic Energy, Moscow,1955,USAECreportAEC-tr2435(Pt.1)259,1956.
  • [4] K.H. Gavhane, M.S. Bhadane, P.P. Kulkarni, V.N. Bhoraskar, S.D. Dhole, S.S. Dahi_wale, 2020, Investigation of novel Eu doped SrDy2O4 microphosphor for thermoluminescence dosimetry, J. Lumin. 117781, doi:10.1016/j.jlumin.2020. 117781.
  • [5] Kuralı, D., Ekdal Karalı, E., Kelemen, A., Holovey, V., Can, N., and Karalı, T., 2016, Thermoluminescence characterization of Ag‐doped Li2B4O7 single crystal materials. Luminescence, doi: 10.1002/bio.3252
  • [6] Odlyha M., Jakiela S., Slater J.M., Bozec L., Bergsten C.J., Gronthoft T., Dahlin E., Colombini M.P., Bonaduce I., Thickett D., Larsen R., Scharff M., PIEZO-ELECTRIC QUARTZ CRYSTAL -BASED DOSIMETRY AND DAMAGE ASSESSMENT OF PARCHMENT AND ARTISTS’VARNISH.
  • [7] Aboud H., Wagiran H., Hossain I. Hussin H.,2012, Infrared Spectra and Energy band gap of Potassium Lithium Borate glass dosimetry, International Journal of Physical Sciences Vol. 7(6), pp. 922 - 926, Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS11.1744.
  • [8] Alves N., Ferraz W.B., Faria L.O., 2019,Thermoluminescent properties of LaAlO3:C crystals synthesized by solid state reaction applied to UV Dosimetry, BRAZILIAN JOURNAL OF RADIATION SCIENCES pages 01-14, ISSN: 2319-0612.
  • [9] Correcher V., Garcia- Guinea J., Sanchez-Munoz L., Rivera T., 2007,Luminescence characterization of a sodium rich feldspar, IX International Symposium/XIX Nacional Meeting on Solid State Dosimetry, pages 28-41.
  • [10] D. Kahn 1956, Radiation dosimetry using alkali halide crystals and the absorption of betatron bremsstrahlung in water and bone, Acta Radiologica, 46:3,1956 563-569, DOI: 10.3109/00016925609171447.
  • [11] Ruud E.I. Schropp, M.Zeman,1998, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, Kluver Akademik Yayınevi, Boston, 1998.
  • [12] Dervişağaoğlu, O., 2020, Review article, Usage of Obsidian (Igneous Energy) in Both Radiation Detection and Fixed-Target Machine in Discovery of Subatomic Particles . Journal of Investigations on Engineering and Technology,3(1),6-9 https://dergipark.org.tr/tr/pub/jiet/issue/55612/703683.
  • [13] Jang K. H., Khaidukov N.M., Tuyen V. P., Kim S. I., Yu M. Y., Seo H. J.,2012, Luminescence properties and crystallographic sites for Eu3+ ions in fluorthalenite Y3Si3O10F, Journal of Alloys and Compounds 536, 47-51 pages.
  • [14] C. Talamonti , K. Kanxheri , S. Pallotta and L. Servoli , 2021, Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry, https://doi.org/10.3389/fphy.2021.632299
  • [15] Akselrod M. S., Akselrod A. E., 2006, NEW Al2O3:C,Mg CRYSTALS FOR RADIOPHOTOLUMINESCENT DOSIMETRY AND OPTICAL IMAGING, doi:10.1093/rpd/nci663.
  • [16] Di J., Xu .X., Xia C., Zeng H., Cheng Y., Li D., Zhou D., Wu F., Cheng J., Xu J.,2012, Crystal growth and optical properties of Sm:CaNb2O6 single crystal, Journal of Alloys and Compounds 536 Pages 20-25.
  • [17] Begum M., Mizanur Rahman A.K.M., Abdul- Rashid H.A., Yusoff Z., Siti Nurasiah Mat Nawi., Mayeen Uddin Khandaker., Bradley D.A.,2021, Photonic crystal fibre as a potential medium for radiotherapy dosimetry. Applied Radiation and Isotopes, 174 109771.
  • [18] J. I. Lee, J. S. Yang, J. L. Kim, A. S. Pradhan, J. D. Lee, K. S. Chung, and H. S. Choe, 2006,Dosimetric characteristics of LiF:Mg,Cu,Si thermoluminescent materials, :Applied Physics Letters 89, 094110 ; doi: 10.1063/1.2345280.
  • [19] M. Menichelli, M. Boscardin, et al 2020, Hydrogenated amorphous silicon detectors for particle detection, beam flux monitoring and dosimetry in high-dose radiation environment
  • [20] M. Menichelli, , M.Bizzarri, et al, 2021, Testing of planar hydrogenated amorphous silicon sensors with charge selective contacts for the construction of 3D- detectors.
  • [21] Khandaker M. U., Nawi S.N. M., Bradley D. A., Lam S.E., Sani S.F.A., Sulieman A., 2021,Studies of thermoluminescence kinetic parameters of polymer pencil lead graphite under photon exposure, Applied radiation and isotopes 174-109757.
  • [22] Faria L.O., Lo D., Kui H. W., Khaidukov N.M. and Nogueira M. S., 2004, Thermoluminescence Response of K2YB5:TB+3 Crystals to Photon Radiation Fields, Radiation Protection Dosimetry, Vol.112, No.3, pages 435-438.
  • [23] Prado-Herrero,P.,.Garcia-Guinea, J.,Crespo-Feo, E. and Correcher, V.,2010, 'Temperature-induced transformation of metavariscite to berlinite', Phase Transitions, 83: 6, 440 — 449. Temperature-induced transformation of metavariscite to berlinite: Phase Transitions: Vol 83, No 6 (tandfonline.com).
  • [24] El‐Nashar HF, El‐Kinawy M, El‐ Faramawy N, 2019, Investigations of the kinetic energy parameters of irradiated (La)‐doped phosphate glass. Luminescence;1–7. https://doi.org/10.1002/bio.3703.
  • [25] V. Guckan, S.W. Bokhari, V. Altunal, A. Ozdemir, W. Gao, Z. Yegingil,2021, Luminescence of Ce3+ and Li+ co-doped MgO synthesized using solid-state reaction method, Nuclear Instruments and Methods in Physics Research B 503 pages 53-61.
  • [26] De Lima Jr M.M., Freire Jr F.L. and Marques F.C.,2002, Boron Doping of Hydrogenated Amorphous Silicon Prepared by rf-co sputtering, Brazilian journal of Physics, pages 379-382.
  • [27] N. Kishimoto et al.,1998, “Radiation resistance of amorphous silicon in optoelectric properties under proton bombardment”, Journal of nuclear materials, 258-263, pp. 1908-1913.
  • [28] V. Perez Mendez et al., 1988, “Hydrogenated amorphous silicon pixel detectors for minimum ionizing particles”, Nucl. Instr and Meth. A, 273, p. 127.
  • [29] M. Despeisse, G. Anelli, P. Jarron, J. Kaplon, D. Moraes, A. Nardulli, F. Powolny, N. Wyrsch, 2008, Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection.
  • [30] Sano K.,2021, Measurement of magnetic susceptibility of obsidian from Shirataki, Hokkaido, Japan, to identify the source of obsidian tools, Jour. RRM, Univ. Hyogo, no.1, p. 35-43.
  • [31] Göksu H.Y., Türetken N.,1979, Source Identification of Obsidian Tools by Thermo_luminescence. PACT Journal 3, 356-359.
  • [32] Patrícia L. Antonioa, , Raquel A.P. Oliveirab , Helen J. Khouryc , Linda V.E. Caldas, 2019, Evaluation of the thermally and optically stimulated response of an Italian Obsidian irradiated in 60Co beams, Radiation Physics and Chemistry, pages 115-120.
  • [33] J.S.Alzahrani, C.Soliman, D.A.Aloraini A.A. Alzahrany,2016, Phototransferred Thermoluminescence from Obsidian Using Ultraviolet Radiation, Journal of Natural Sciences Research, Vol.6, No.16, pages 53-59.
  • [34] Woodley, S., Catlow, R.,2008, Crystal structure prediction from first principles. NatureMater 7, 937–946, 2008.https://doi.org/10.1038/nmat2321.
  • [35] General Chemistry Notes https://chem.libretexts.org/Bookshelves/General_Chemistry
  • [36] Otsuka M., Kato F., and Matsuda Y.,2000, Comparative Evaluation of the Degree of Indomethacin Crystallinity by Chemoinfometrical Fourie-Transformed Near-Infrared Spectroscopy and Conventional Powder X-Ray Diffractiometry pages 1-8, 2000.
  • [37] Aydoğan Ş. 2011, Katı Hal Fiziği, Nobel Bilim ve Araştırma Merkezi yayın No: 1620 ISBN 978-605-395-431-6, 2011.
  • [38] Pitteri M., Zanzotto G.,1996, On the definition and classification of Bravais lattices.
  • [39]Kashif Q.Q., 2018 Crystal System- Bravais Lattices, http://dx.doi.org/10.13140/RG.2.2.11512.14083.
  • [40] Burzlaff H., Grimmer H., Gruber B., De Walff P.M. and Zimmermann H.,2016, International Tables of Crystallography, Vol A, Chapter 3.1, pages 698-719.
  • [41] Stachurski Z.H.,, 2011, On Structure and Properties of Amorphous Materials, Materials 2011, 4, 1564-1598; doi:10.3390/ma4091564.
  • [42] Engel P., 2002, Geometric Crystallography. Springer Kluwer Science Publishers.
  • [43] Cheng, Y.T.; Johnson, W.L., 1987, Disordered materials: A survey of amorphous solids. Science 235, 997-1002.
  • [44] Bernal, J.D., 1959,A geometrical approach to the structure of liquids. Nature, 4665, 141-147.
  • [45] Torquato, S., 2002,Random Heterogenous Materials; Springer-Verlag: New York, NY, USA.
  • [46] Hui, X.; Fang, H.Z.; Chen, G.L.; Shang, S.L.; Wang, Y.; Qin, J.Y.; Liu, Z.K., 2009, Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Mater., 57, 376-391.
  • [47] To, L.-Th.; Daley, D.; Stachurski, Z.H., 2006,On the definition of an ideal amorphous solid of uniform hard spheres. Solid State Sci., 8, 868-896).
  • [48] Adams, D.J.; Mathesons, A.J., 1972, Computation of dense random packings of hard spheres. J. Chem. Phys. 56, 1989-1994.
  • [49] Finney, J.L. 1970,Random Packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A , 319, 479-493.
  • [50] Clarke, A.S.; Jonsson, H., 1993, Structural changes accompanying densification of random hard-sphere ´ packings. Phys. Rev. E, 47/6, 3975-3984.
  • [51] Donev, A.; Torquato, S.; Stillinger, F.H., 2005, Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E, 71, 0501-0514.
  • [52] Conway, J.N.; Sloan, N.J.A, 1998, Sphere Packings, Lattices and Groups; Springer-Verlag: New York, NY, USA, 1998.
  • [53] Torquato, S.,2002, Random Heterogenous Materials; Springer-Verlag: New York, NY, USA.
  • [54] Stoyan, D.; Kendall, W.S.; Mecke, J., 1995, Stochastic Geometry and Its Applications; Wiley: Chichester, UK.
  • [55] Zaccarelli, E.; Foffi, G.; Sciortino, F.; Tartaglia, P.; Dawson, K.A., 2001,Gaussian density fluctuations and mode coupling theory for supercooled liquids. Europhys. Lett , 55, 157-163.
  • [56] Stachurski Z.H. and Welberry T.R., 2011, Metall. and Mater. Trans. A42, p.21-29.
  • [57] Stachurski Z.H., 2003, Phys. Rev. Lett., 90/15, 155502-1.
  • [58] B.Subashini, Mrs.Geetha, 2017, Introduction to Crystal Growth Techniques, International Journal of Engineering and Techniques - Volume 3 Issue 5, ISSN: 2395-1303.
  • [59] Ye N., Wang J.Y., Boughton R.I., and Hong M.-C., 2017, Functional Crystals, chapter 20, pages 575-611.
  • [60] J. Czochralski, Z. 1918, Phys. Chem. 92, 219.
  • [61] Talik E., Oboz M., 2013, Czochralsi Method for Crystal Growth of Reactive Intermetallics, 124 (2).
  • [62] Kouwenberg, J., 2018, Fluorescent Nuclear Track Detectors for Alpha Particle Measurement, DOI: 10.4233/uuid:6b7b09bf-5eb0-4a2e-bd93-a3bfff3a2772.
  • [63] Venkataraman, chapter 4 semiconductor detectors, Handbook of Radioactivity Analyisis pages 409-491, 2020. https://doi.org/10.1016/B978-0-12-814397-1.00004-2.
  • [64] Antonio P. L., Oliviera R.A.P, Khoury H.J., Caldas L. V.E., 2019,Evaluation of the thermally and optically stimulated response of an Italian Obsidian irradiated in 60Co beams, Radiaiton Physics and Chemistry 155, p. 115-120.
Yıl 2022, Cilt: 5 Sayı: 1, 63 - 75, 30.06.2022

Öz

Proje Numarası

Proje değil

Kaynakça

  • Bos A.J.J., 2007, Theory of thermoluminescence, Delft University of Technology, Faculty of Applied Sciences, 2629 JB Delft, The Netherlands.
  • [2] McKeever S.W.S, 2001, Optically stimulated luminescence Dosimetry, Nuclear Instruments and Methods in Pyhsics Research B 184, Pages 29-54, 2001.
  • [3] V.V Antonov_Romanksi, I.F. Keirum- Marcus, M.S. Porishina, Z.A. Trapeznikova in: Conference of the Academy od Science of the USSR on the peaceful Uses of Atomic Energy, Moscow,1955,USAECreportAEC-tr2435(Pt.1)259,1956.
  • [4] K.H. Gavhane, M.S. Bhadane, P.P. Kulkarni, V.N. Bhoraskar, S.D. Dhole, S.S. Dahi_wale, 2020, Investigation of novel Eu doped SrDy2O4 microphosphor for thermoluminescence dosimetry, J. Lumin. 117781, doi:10.1016/j.jlumin.2020. 117781.
  • [5] Kuralı, D., Ekdal Karalı, E., Kelemen, A., Holovey, V., Can, N., and Karalı, T., 2016, Thermoluminescence characterization of Ag‐doped Li2B4O7 single crystal materials. Luminescence, doi: 10.1002/bio.3252
  • [6] Odlyha M., Jakiela S., Slater J.M., Bozec L., Bergsten C.J., Gronthoft T., Dahlin E., Colombini M.P., Bonaduce I., Thickett D., Larsen R., Scharff M., PIEZO-ELECTRIC QUARTZ CRYSTAL -BASED DOSIMETRY AND DAMAGE ASSESSMENT OF PARCHMENT AND ARTISTS’VARNISH.
  • [7] Aboud H., Wagiran H., Hossain I. Hussin H.,2012, Infrared Spectra and Energy band gap of Potassium Lithium Borate glass dosimetry, International Journal of Physical Sciences Vol. 7(6), pp. 922 - 926, Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS11.1744.
  • [8] Alves N., Ferraz W.B., Faria L.O., 2019,Thermoluminescent properties of LaAlO3:C crystals synthesized by solid state reaction applied to UV Dosimetry, BRAZILIAN JOURNAL OF RADIATION SCIENCES pages 01-14, ISSN: 2319-0612.
  • [9] Correcher V., Garcia- Guinea J., Sanchez-Munoz L., Rivera T., 2007,Luminescence characterization of a sodium rich feldspar, IX International Symposium/XIX Nacional Meeting on Solid State Dosimetry, pages 28-41.
  • [10] D. Kahn 1956, Radiation dosimetry using alkali halide crystals and the absorption of betatron bremsstrahlung in water and bone, Acta Radiologica, 46:3,1956 563-569, DOI: 10.3109/00016925609171447.
  • [11] Ruud E.I. Schropp, M.Zeman,1998, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, Kluver Akademik Yayınevi, Boston, 1998.
  • [12] Dervişağaoğlu, O., 2020, Review article, Usage of Obsidian (Igneous Energy) in Both Radiation Detection and Fixed-Target Machine in Discovery of Subatomic Particles . Journal of Investigations on Engineering and Technology,3(1),6-9 https://dergipark.org.tr/tr/pub/jiet/issue/55612/703683.
  • [13] Jang K. H., Khaidukov N.M., Tuyen V. P., Kim S. I., Yu M. Y., Seo H. J.,2012, Luminescence properties and crystallographic sites for Eu3+ ions in fluorthalenite Y3Si3O10F, Journal of Alloys and Compounds 536, 47-51 pages.
  • [14] C. Talamonti , K. Kanxheri , S. Pallotta and L. Servoli , 2021, Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry, https://doi.org/10.3389/fphy.2021.632299
  • [15] Akselrod M. S., Akselrod A. E., 2006, NEW Al2O3:C,Mg CRYSTALS FOR RADIOPHOTOLUMINESCENT DOSIMETRY AND OPTICAL IMAGING, doi:10.1093/rpd/nci663.
  • [16] Di J., Xu .X., Xia C., Zeng H., Cheng Y., Li D., Zhou D., Wu F., Cheng J., Xu J.,2012, Crystal growth and optical properties of Sm:CaNb2O6 single crystal, Journal of Alloys and Compounds 536 Pages 20-25.
  • [17] Begum M., Mizanur Rahman A.K.M., Abdul- Rashid H.A., Yusoff Z., Siti Nurasiah Mat Nawi., Mayeen Uddin Khandaker., Bradley D.A.,2021, Photonic crystal fibre as a potential medium for radiotherapy dosimetry. Applied Radiation and Isotopes, 174 109771.
  • [18] J. I. Lee, J. S. Yang, J. L. Kim, A. S. Pradhan, J. D. Lee, K. S. Chung, and H. S. Choe, 2006,Dosimetric characteristics of LiF:Mg,Cu,Si thermoluminescent materials, :Applied Physics Letters 89, 094110 ; doi: 10.1063/1.2345280.
  • [19] M. Menichelli, M. Boscardin, et al 2020, Hydrogenated amorphous silicon detectors for particle detection, beam flux monitoring and dosimetry in high-dose radiation environment
  • [20] M. Menichelli, , M.Bizzarri, et al, 2021, Testing of planar hydrogenated amorphous silicon sensors with charge selective contacts for the construction of 3D- detectors.
  • [21] Khandaker M. U., Nawi S.N. M., Bradley D. A., Lam S.E., Sani S.F.A., Sulieman A., 2021,Studies of thermoluminescence kinetic parameters of polymer pencil lead graphite under photon exposure, Applied radiation and isotopes 174-109757.
  • [22] Faria L.O., Lo D., Kui H. W., Khaidukov N.M. and Nogueira M. S., 2004, Thermoluminescence Response of K2YB5:TB+3 Crystals to Photon Radiation Fields, Radiation Protection Dosimetry, Vol.112, No.3, pages 435-438.
  • [23] Prado-Herrero,P.,.Garcia-Guinea, J.,Crespo-Feo, E. and Correcher, V.,2010, 'Temperature-induced transformation of metavariscite to berlinite', Phase Transitions, 83: 6, 440 — 449. Temperature-induced transformation of metavariscite to berlinite: Phase Transitions: Vol 83, No 6 (tandfonline.com).
  • [24] El‐Nashar HF, El‐Kinawy M, El‐ Faramawy N, 2019, Investigations of the kinetic energy parameters of irradiated (La)‐doped phosphate glass. Luminescence;1–7. https://doi.org/10.1002/bio.3703.
  • [25] V. Guckan, S.W. Bokhari, V. Altunal, A. Ozdemir, W. Gao, Z. Yegingil,2021, Luminescence of Ce3+ and Li+ co-doped MgO synthesized using solid-state reaction method, Nuclear Instruments and Methods in Physics Research B 503 pages 53-61.
  • [26] De Lima Jr M.M., Freire Jr F.L. and Marques F.C.,2002, Boron Doping of Hydrogenated Amorphous Silicon Prepared by rf-co sputtering, Brazilian journal of Physics, pages 379-382.
  • [27] N. Kishimoto et al.,1998, “Radiation resistance of amorphous silicon in optoelectric properties under proton bombardment”, Journal of nuclear materials, 258-263, pp. 1908-1913.
  • [28] V. Perez Mendez et al., 1988, “Hydrogenated amorphous silicon pixel detectors for minimum ionizing particles”, Nucl. Instr and Meth. A, 273, p. 127.
  • [29] M. Despeisse, G. Anelli, P. Jarron, J. Kaplon, D. Moraes, A. Nardulli, F. Powolny, N. Wyrsch, 2008, Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection.
  • [30] Sano K.,2021, Measurement of magnetic susceptibility of obsidian from Shirataki, Hokkaido, Japan, to identify the source of obsidian tools, Jour. RRM, Univ. Hyogo, no.1, p. 35-43.
  • [31] Göksu H.Y., Türetken N.,1979, Source Identification of Obsidian Tools by Thermo_luminescence. PACT Journal 3, 356-359.
  • [32] Patrícia L. Antonioa, , Raquel A.P. Oliveirab , Helen J. Khouryc , Linda V.E. Caldas, 2019, Evaluation of the thermally and optically stimulated response of an Italian Obsidian irradiated in 60Co beams, Radiation Physics and Chemistry, pages 115-120.
  • [33] J.S.Alzahrani, C.Soliman, D.A.Aloraini A.A. Alzahrany,2016, Phototransferred Thermoluminescence from Obsidian Using Ultraviolet Radiation, Journal of Natural Sciences Research, Vol.6, No.16, pages 53-59.
  • [34] Woodley, S., Catlow, R.,2008, Crystal structure prediction from first principles. NatureMater 7, 937–946, 2008.https://doi.org/10.1038/nmat2321.
  • [35] General Chemistry Notes https://chem.libretexts.org/Bookshelves/General_Chemistry
  • [36] Otsuka M., Kato F., and Matsuda Y.,2000, Comparative Evaluation of the Degree of Indomethacin Crystallinity by Chemoinfometrical Fourie-Transformed Near-Infrared Spectroscopy and Conventional Powder X-Ray Diffractiometry pages 1-8, 2000.
  • [37] Aydoğan Ş. 2011, Katı Hal Fiziği, Nobel Bilim ve Araştırma Merkezi yayın No: 1620 ISBN 978-605-395-431-6, 2011.
  • [38] Pitteri M., Zanzotto G.,1996, On the definition and classification of Bravais lattices.
  • [39]Kashif Q.Q., 2018 Crystal System- Bravais Lattices, http://dx.doi.org/10.13140/RG.2.2.11512.14083.
  • [40] Burzlaff H., Grimmer H., Gruber B., De Walff P.M. and Zimmermann H.,2016, International Tables of Crystallography, Vol A, Chapter 3.1, pages 698-719.
  • [41] Stachurski Z.H.,, 2011, On Structure and Properties of Amorphous Materials, Materials 2011, 4, 1564-1598; doi:10.3390/ma4091564.
  • [42] Engel P., 2002, Geometric Crystallography. Springer Kluwer Science Publishers.
  • [43] Cheng, Y.T.; Johnson, W.L., 1987, Disordered materials: A survey of amorphous solids. Science 235, 997-1002.
  • [44] Bernal, J.D., 1959,A geometrical approach to the structure of liquids. Nature, 4665, 141-147.
  • [45] Torquato, S., 2002,Random Heterogenous Materials; Springer-Verlag: New York, NY, USA.
  • [46] Hui, X.; Fang, H.Z.; Chen, G.L.; Shang, S.L.; Wang, Y.; Qin, J.Y.; Liu, Z.K., 2009, Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Mater., 57, 376-391.
  • [47] To, L.-Th.; Daley, D.; Stachurski, Z.H., 2006,On the definition of an ideal amorphous solid of uniform hard spheres. Solid State Sci., 8, 868-896).
  • [48] Adams, D.J.; Mathesons, A.J., 1972, Computation of dense random packings of hard spheres. J. Chem. Phys. 56, 1989-1994.
  • [49] Finney, J.L. 1970,Random Packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A , 319, 479-493.
  • [50] Clarke, A.S.; Jonsson, H., 1993, Structural changes accompanying densification of random hard-sphere ´ packings. Phys. Rev. E, 47/6, 3975-3984.
  • [51] Donev, A.; Torquato, S.; Stillinger, F.H., 2005, Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E, 71, 0501-0514.
  • [52] Conway, J.N.; Sloan, N.J.A, 1998, Sphere Packings, Lattices and Groups; Springer-Verlag: New York, NY, USA, 1998.
  • [53] Torquato, S.,2002, Random Heterogenous Materials; Springer-Verlag: New York, NY, USA.
  • [54] Stoyan, D.; Kendall, W.S.; Mecke, J., 1995, Stochastic Geometry and Its Applications; Wiley: Chichester, UK.
  • [55] Zaccarelli, E.; Foffi, G.; Sciortino, F.; Tartaglia, P.; Dawson, K.A., 2001,Gaussian density fluctuations and mode coupling theory for supercooled liquids. Europhys. Lett , 55, 157-163.
  • [56] Stachurski Z.H. and Welberry T.R., 2011, Metall. and Mater. Trans. A42, p.21-29.
  • [57] Stachurski Z.H., 2003, Phys. Rev. Lett., 90/15, 155502-1.
  • [58] B.Subashini, Mrs.Geetha, 2017, Introduction to Crystal Growth Techniques, International Journal of Engineering and Techniques - Volume 3 Issue 5, ISSN: 2395-1303.
  • [59] Ye N., Wang J.Y., Boughton R.I., and Hong M.-C., 2017, Functional Crystals, chapter 20, pages 575-611.
  • [60] J. Czochralski, Z. 1918, Phys. Chem. 92, 219.
  • [61] Talik E., Oboz M., 2013, Czochralsi Method for Crystal Growth of Reactive Intermetallics, 124 (2).
  • [62] Kouwenberg, J., 2018, Fluorescent Nuclear Track Detectors for Alpha Particle Measurement, DOI: 10.4233/uuid:6b7b09bf-5eb0-4a2e-bd93-a3bfff3a2772.
  • [63] Venkataraman, chapter 4 semiconductor detectors, Handbook of Radioactivity Analyisis pages 409-491, 2020. https://doi.org/10.1016/B978-0-12-814397-1.00004-2.
  • [64] Antonio P. L., Oliviera R.A.P, Khoury H.J., Caldas L. V.E., 2019,Evaluation of the thermally and optically stimulated response of an Italian Obsidian irradiated in 60Co beams, Radiaiton Physics and Chemistry 155, p. 115-120.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Derleme Makaleler
Yazarlar

Oğuzhan Dervişağaoğlu 0000-0003-3901-9238

Proje Numarası Proje değil
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 11 Nisan 2022
Kabul Tarihi 22 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Dervişağaoğlu, O. (2022). Usage of Some Crystals and Amorphous Materials in Radiation Physics Studies. Journal of Investigations on Engineering and Technology, 5(1), 63-75.