Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Magnetic Field Induced Martensitic Transformation Properties in Mo Added NiMnSbB Alloys

Yıl 2022, Cilt: 5 Sayı: 2, 142 - 149, 31.12.2022

Öz

In this study, the structural and magnetic properties of Ni50-xMoxMn37Sb13+B2 (x=0, 1, 3, 5 ve 7) ferromagnetic shape memory Heusler alloys were investigated. According to XRD analyses performed at room temperature, 4O and 10M phases coexist in M0 and M1 samples, while M3, M5 and M7 samples have cubic L21 crystal structures. As a result of temperature dependent magnetization analysis (M-T), it was determined that all samples produced exhibited martensitic transformation. Phase transition temperatures decreased with increasing Mo content. In addition, increasing the Mo content led to a significant increase in the magnetization of both the martensite and the austenite phase. In the last section, it is revealed that the samples exhibit magnetic field-induced martensitic transformation at constant temperatures determined in the As-Af range.

Proje Numarası

FDK-2022-2892

Kaynakça

  • Pérez-Landazábal, J. I., Recarte, V., Sánchez-Alarcos, V., Gómez-Polo, C., Kustov, S., & Cesari, E. (2011). Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. Journal of Applied Physics, 109(9).
  • Han, Z. D., Wang, D. H., Zhang, C. L., Xuan, H. C., Zhang, J. R., Gu, B. X., & Du, Y. W. (2008). The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys. Journal of Applied Physics, 104(5).
  • Desroches, R., & Smith, B. (2004). Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations. Journal of Earthquake Engineering, 8(3), 415–429.
  • Kirat, G. (2021). Exchange Bias Effect in NiMnSbB Ferromagnetic Shape Memory Alloys Depending on Mn Content. Adıyaman University Journal of Science, 11, 444–455.
  • Karaca, H. E., Karaman, I., Basaran, B., Lagoudas, D. C., Chumlyakov, Y. I., & Maier, H. J. (2007). On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Materialia, 55(13), 4253–4269
  • Karaca, H. E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, I., & Maier, H. J. (2009). Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys — A New Actuation Mechanism with Large Work Output. 983–998.
  • Zhang, H., Zhang, X., Qian, M., Yao, Z., Wei, L., & Geng, L. (2020). Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. Journal of Magnetism and Magnetic Materials, 500(November 2019), 166359.
  • Kirat, G., Aksan, M. A., & Aydogdu, Y. (2019). Magnetic field induced martensitic transition in Fe doped Ni-Mn-Sn-B shape memory ribbons. Intermetallics, 111(October 2018), 106493.
  • Kirat, G., Kizilaslan, O., & Aksan, M. A. (2019). Journal of Magnetism and Magnetic Materials Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic fi eld sensor aspects operating at room temperature. Journal of Magnetism and Magnetic Materials, 477(January), 366–371.
  • Zheng, H., Wang, W., Xue, S., Zhai, Q., & Frenzel, J. (2013). Composition-dependent crystal structure and martensitic transformation in Heusler Ni – Mn – Sn alloys. Acta Materialia, 61(12), 4648–4656.
  • Kirat, G., & Aksan, M. A. (2021). Influence of the Cu substitution on magnetic properties of Ni–Mn–Sn–B shape memory ribbons. Applied Physics A: Materials Science and Processing, 127(2), 1–9.
  • Pons, J., Chernenko, V. A., Santamarta, R., & Cesari, E. (2000). Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Materialia, 48(12), 3027–3038.
  • Deltell, A., Escoda, L., Saurina, J., & Suñol, J. J. (2015). Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys. 695–705.
  • Wang, W.-H., Chen, J.-L., Liu, Z., Wu, G.-H., & Zhan, W.-S. (2001). Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals, Physical Review B, 65(1), 012416.
  • Dos Reis, R. D., Caron, L., Singh, S., Felser, C., & Nicklas, M. (2021). Direct and indirect determination of the magnetocaloric effect in the heusler compound Ni1.7Pt0.3MnGa. Entropy, 23(10), 1–10.
  • Hernando, B., Llamazares, J. L. S., Santos, J. D., Sánchez, M. L., Escoda, L., Suñol, J. J., Varga, R., García, C., & González, J. (2009). Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties. Journal of Magnetism and Magnetic Materials, 321(7), 763–768.
  • Xuan, H. C., Zheng, Y. X., Ma, S. C., Cao, Q. Q., Wang, D. H., & Du, Y. W. (2010). The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys. Journal of Applied Physics, 108(10), 1–5.
  • Krenke, T., Acet, M., & Wassermann, E. F. (2005). Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni- Mn- Sn alloys. 1–9.
  • Llamazares, J. L. S., Quintana-Nedelcos, A., Ríos-Jara, D., Sánchez-Valdes, C. F., García-Fernández, T., & García, C. (2016). The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni-Mn-Sn melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 401, 38–43.
  • Zayak, A. T., Adeagbo, W. A., Entel, P., & Rabe, K. M. (2010). e a dependence of the lattice instability of cubic Heusler alloys from first principles e / a dependence of the lattice instability of cubic Heusler alloys. 111903(2006), 5–8.
  • Zhang, B., Zhang, X. X., Yu, S. Y., Chen, J. L., Cao, Z. X., & Wu, G. H. (2007). Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Applied Physics Letters, 91(1), 89–92.
  • Yu, S. Y., Cao, Z. X., Ma, L., Liu, G. D., Chen, J. L., Wu, G. H., Zhang, B., & Zhang, X. X. (2007). Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Applied Physics Letters, 91(10).
  • Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., & Ishida, K. (2006). Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 439(7079), 957–960.
  • Liu, J., Scheerbaum, N., Hinz, D., & Gutfleisch, O. (2008). Magnetostructural transformation in Ni-Mn-In-Co ribbons. Applied Physics Letters, 92(16), 35–38.
  • Brown, P. J., Gandy, A. P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K. U., Oikawa, K., Ouladdiaf, B., & Ziebeck, K. R. A. (2006). The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. Journal of Physics Condensed Matter, 18(7), 2249–2259.
  • Chen, Z., Cong, D., Li, S., Zhang, Y., Li, S., Cao, Y., Li, S., Song, C., Ren, Y., & Wang, Y. (2021). External‐field‐induced phase transformation and associated properties in a Ni50Mn34Fe3In13 metamagnetic shape memory wire. Metals, 11(2), 1–14.

Mo Eklenmiş NiMnSbB Alaşımlarında Manyetik Alan Kaynaklı Martensitik Dönüşüm Özelliklerinin Belirlenmesi

Yıl 2022, Cilt: 5 Sayı: 2, 142 - 149, 31.12.2022

Öz

Bu çalışmada, Ni50-xMoxMn37Sb13+B2 (x=0, 1, 3, 5 ve 7) ferromanyetik şekil hafızalı Heusler alaşımlarının yapısal ve manyetik özellikleri incelenmiştir. Oda sıcaklığında gerçekleştirlen XRD analizlerine göre M0 ve M1 numunelerinde 4O ve 10M fazları bir arada bulunurken M3, M5 ve M7 numuneleri ise kübik L21 kristal yapısına sahiptir. Sıcaklığa bağlı manyetizasyon analizleri (M-T) sonucunda, üretilen bütün numunelerin martensitik dönüşüm sergiledikleri belirlenmiştir. Faz geçiş sıcaklıkları artan Mo oranı ile azalmıştır. Ayrıca Mo oranın artırılması hem martensit hemde ösenit fazın manyetizasyonunda dikkate değer bir artışa yol açmıştır. Son bölümde ise As-Af aralığında belirlenen sabit sıcaklıklarda numunelerin manyetik alan kaynaklı martensitik dönüşüm sergiledikleri açığa çıkarılmıştır.

Destekleyen Kurum

İNÖNÜ ÜNİVERSİTESİ

Proje Numarası

FDK-2022-2892

Teşekkür

Bu çalışma İnönü Üniversitesi Bilimsel Araştırma projeleri birimi tarafından FDK-2022-2892 nolu proje kapsamında desteklenmiştir.

Kaynakça

  • Pérez-Landazábal, J. I., Recarte, V., Sánchez-Alarcos, V., Gómez-Polo, C., Kustov, S., & Cesari, E. (2011). Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. Journal of Applied Physics, 109(9).
  • Han, Z. D., Wang, D. H., Zhang, C. L., Xuan, H. C., Zhang, J. R., Gu, B. X., & Du, Y. W. (2008). The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys. Journal of Applied Physics, 104(5).
  • Desroches, R., & Smith, B. (2004). Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations. Journal of Earthquake Engineering, 8(3), 415–429.
  • Kirat, G. (2021). Exchange Bias Effect in NiMnSbB Ferromagnetic Shape Memory Alloys Depending on Mn Content. Adıyaman University Journal of Science, 11, 444–455.
  • Karaca, H. E., Karaman, I., Basaran, B., Lagoudas, D. C., Chumlyakov, Y. I., & Maier, H. J. (2007). On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Materialia, 55(13), 4253–4269
  • Karaca, H. E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, I., & Maier, H. J. (2009). Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys — A New Actuation Mechanism with Large Work Output. 983–998.
  • Zhang, H., Zhang, X., Qian, M., Yao, Z., Wei, L., & Geng, L. (2020). Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. Journal of Magnetism and Magnetic Materials, 500(November 2019), 166359.
  • Kirat, G., Aksan, M. A., & Aydogdu, Y. (2019). Magnetic field induced martensitic transition in Fe doped Ni-Mn-Sn-B shape memory ribbons. Intermetallics, 111(October 2018), 106493.
  • Kirat, G., Kizilaslan, O., & Aksan, M. A. (2019). Journal of Magnetism and Magnetic Materials Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic fi eld sensor aspects operating at room temperature. Journal of Magnetism and Magnetic Materials, 477(January), 366–371.
  • Zheng, H., Wang, W., Xue, S., Zhai, Q., & Frenzel, J. (2013). Composition-dependent crystal structure and martensitic transformation in Heusler Ni – Mn – Sn alloys. Acta Materialia, 61(12), 4648–4656.
  • Kirat, G., & Aksan, M. A. (2021). Influence of the Cu substitution on magnetic properties of Ni–Mn–Sn–B shape memory ribbons. Applied Physics A: Materials Science and Processing, 127(2), 1–9.
  • Pons, J., Chernenko, V. A., Santamarta, R., & Cesari, E. (2000). Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Materialia, 48(12), 3027–3038.
  • Deltell, A., Escoda, L., Saurina, J., & Suñol, J. J. (2015). Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys. 695–705.
  • Wang, W.-H., Chen, J.-L., Liu, Z., Wu, G.-H., & Zhan, W.-S. (2001). Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals, Physical Review B, 65(1), 012416.
  • Dos Reis, R. D., Caron, L., Singh, S., Felser, C., & Nicklas, M. (2021). Direct and indirect determination of the magnetocaloric effect in the heusler compound Ni1.7Pt0.3MnGa. Entropy, 23(10), 1–10.
  • Hernando, B., Llamazares, J. L. S., Santos, J. D., Sánchez, M. L., Escoda, L., Suñol, J. J., Varga, R., García, C., & González, J. (2009). Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties. Journal of Magnetism and Magnetic Materials, 321(7), 763–768.
  • Xuan, H. C., Zheng, Y. X., Ma, S. C., Cao, Q. Q., Wang, D. H., & Du, Y. W. (2010). The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys. Journal of Applied Physics, 108(10), 1–5.
  • Krenke, T., Acet, M., & Wassermann, E. F. (2005). Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni- Mn- Sn alloys. 1–9.
  • Llamazares, J. L. S., Quintana-Nedelcos, A., Ríos-Jara, D., Sánchez-Valdes, C. F., García-Fernández, T., & García, C. (2016). The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni-Mn-Sn melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 401, 38–43.
  • Zayak, A. T., Adeagbo, W. A., Entel, P., & Rabe, K. M. (2010). e a dependence of the lattice instability of cubic Heusler alloys from first principles e / a dependence of the lattice instability of cubic Heusler alloys. 111903(2006), 5–8.
  • Zhang, B., Zhang, X. X., Yu, S. Y., Chen, J. L., Cao, Z. X., & Wu, G. H. (2007). Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Applied Physics Letters, 91(1), 89–92.
  • Yu, S. Y., Cao, Z. X., Ma, L., Liu, G. D., Chen, J. L., Wu, G. H., Zhang, B., & Zhang, X. X. (2007). Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Applied Physics Letters, 91(10).
  • Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., & Ishida, K. (2006). Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 439(7079), 957–960.
  • Liu, J., Scheerbaum, N., Hinz, D., & Gutfleisch, O. (2008). Magnetostructural transformation in Ni-Mn-In-Co ribbons. Applied Physics Letters, 92(16), 35–38.
  • Brown, P. J., Gandy, A. P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K. U., Oikawa, K., Ouladdiaf, B., & Ziebeck, K. R. A. (2006). The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. Journal of Physics Condensed Matter, 18(7), 2249–2259.
  • Chen, Z., Cong, D., Li, S., Zhang, Y., Li, S., Cao, Y., Li, S., Song, C., Ren, Y., & Wang, Y. (2021). External‐field‐induced phase transformation and associated properties in a Ni50Mn34Fe3In13 metamagnetic shape memory wire. Metals, 11(2), 1–14.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Murat Ayyıldız 0000-0002-0395-8914

Gökhan Kırat 0000-0001-7357-2921

Mehmet Ali Aksan 0000-0001-9465-0319

Proje Numarası FDK-2022-2892
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 19 Aralık 2022
Kabul Tarihi 27 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Ayyıldız, M., Kırat, G., & Aksan, M. A. (2022). Mo Eklenmiş NiMnSbB Alaşımlarında Manyetik Alan Kaynaklı Martensitik Dönüşüm Özelliklerinin Belirlenmesi. Journal of Investigations on Engineering and Technology, 5(2), 142-149.