Araştırma Makalesi
BibTex RIS Kaynak Göster

Sadakat Programında Müşteri Kayıp Tahmini: Bir Vaka Çalışması

Yıl 2019, Cilt: 1 Sayı: 1, 59 - 66, 30.12.2019

Öz

Artan rekabetle birlikte, yeni
müşteri edinmek her geçen gün daha maliyetli bir hale geldi ve şirketler var olan
müşterilerini elde tutmak için daha fazla çaba harcar oldu. Tahminleyici
modellerin geliştirilmesi ve bilgisayar teknolojisindeki gelişmeler sayesinde
büyük miktarda veriyi analiz edebilme kabiliyeti, şirketlere, hangi
müşterilerinin müşterileri olarak kalmaya devam edeceğini ve hangilerinin terk
etmeye meyilli olabileceğini güvenilir bir şekilde tahmin etme imkanı verdi. Bu
çalışmada, Türkiye'de mobil bir sadakat uygulamasından elde edilen veriler;
restoran, perakende ve e-ticaret olmak üzere faaliyet gösterilen üç farklı
sektör üzerinden analiz edilecektir. Müşterilerin gelecek çeyrekteki aktiflik
durumlarını tahmin etmek için her sektörde iki farklı tahminleyici model
geliştirilmiştir. Geliştirilen modellerde Lojistik Regresyon ve Yapay Sinir
Ağları yöntemleri kullanılmıştır. Geliştirilen tüm bu altı modelde, bütün
sektörlerde genel olarak %90'ın üzerinde doğruluk oranına ulaşılmasının yanı
sıra, Yapay Sinir Ağları doğruluk, hassasiyet ve özgüllük ölçütleri açısından
Lojistik Regresyona kıyasla daha iyi bir performans sergiledi.

Kaynakça

  • 1] Dixon, M. “39 Experts predict the future.” America’s Community Banker, vol 8(7), pp. 20–31, 1999
  • [2] Floyd, T. “Creating a New Customer Experience”. Bank Systems and Technology, vol 37(1), R8–R13, 2000
  • [3] Slater, Stanley & Narver, John. “Intelligence and Superior Customer Value.” Journal of the Academy of Marketing Science, ol 28, pp. 120-127, 2012 Doi: 10.1177/0092070300281011.
  • [4] Ling, R., & Yen, D.C. “Customer relationship management: An analysis framework and implementation strategies”. Journal of Computer Information Systems, vol 41(3), pp. 82–97, 2001
  • [5] Berson, Alex, Stephen Smith, and Kurt Thearling. Building Data Mining Applications for CRM. London: McGraw-Hill, 2000.
  • [6] Glady, Nicolas & Baesens, Bart & Croux, Christophe. “Modeling Churn Using Customer Lifetime Value”. European Journal of Operational Research, vol 197, pp. 402-411, 2009 Doi: 10.1016/j.ejor.2008.06.027.
  • [7] Van den Poel, Dirk & Lariviere, Bart. “Customer Attrition Analysis for Financial Services Using Proportional Hazard Models”. European Journal of Operational Research, vol 157, pp. 196-217, 2004 Doi: 10.1016/S0377-2217(03)00069-9.
  • [8] Buckinx W. and Van den Poel, D. “Customer base analysis: Partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting.” European Journal of Operational Research, vol 164, pp. 252-268, July 2005 Doi: 10.1016/j.ejor.2003.12.010.
  • [9] Tamaddoni, Ali & Sepehri, Mohammad & Teimourpour, Babak & Choobdar, Sarvenaz. “Modeling customer churn in a non-contractual setting: The case of telecommunications service providers”. Journal of Strategic Marketing, vol 18, pp. 587-598, 2010. Doi: 10.1080/0965254X.2010.529158.
  • [10] Nie, Guangli & Rowe, Wei & Zhang, Lingling & Tian, Yingjie & Shi, Yong. “Credit card churn forecasting by logistic regression and decision tree”. Expert Syst. Appl., vol 38, pp. 15273-15285, 2011 Doi: 10.1016/j.eswa.2011.06.028.
  • [11] Dreiseitl, Stephan & Ohno-Machado, Lucila. Logistic regression and artificial neural network classification models: A methodology review. Journal of biomedical informatics, vol 35(5-6), pp. 352-359, 2002, Doi: 10.1016/S1532-0464(03)00034-0.
  • [12] L. Atlas et al., "A performance comparison of trained multilayer perceptrons and trained classification trees," Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics, Cambridge, MA, USA, 1989, pp. 915-920 vol.3.
  • [13] Brown, Donald E., Vincent Corruble and Clarence Louis Pittard. “A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems.” Pattern Recognition, vol 26, pp. 953-961, 1992 Doi: 10.1016/0031-3203(93)90060-A
  • [14] Linder, Roland & Geier, Jeannine & Kölliker, Mathias. “Artificial neural networks, classification trees and regression: Which method for which customer base?”. The Journal of Database Marketing & Customer Strategy Management, vol 11, pp. 344-356, 2003 Doi: 10.1057/palgrave.dbm.3240233.
  • [15] Khan, A.A & Jamwal, Sanjay & Sepehri, Mohammad Mehdi. “Applying Data Mining to Customer Churn Prediction in an Internet Service Provider”. International Journal of Computer Applications, vol 9(7), pp. 8-14, 2010 Doi: 10.5120/1400-1889.
  • [16] Hwang, Hyunseok & Jung, Taesoo & Suh, Euiho. “An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry”. Expert Systems with Applications, vol 26, pp. 181-188, 2004 Doi: 10.1016/S0957-4174(03)00133-7.
  • [17] Hosmer, David W., Stanley Lemeshow, and Rodney X. Sturdivant. Applied Logistic Regression. 3rd ed. Hoboken, NJ: Wiley, 2013.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Cilt 1 - Sayı 1 - 30 Aralık 2019
Yazarlar

Yeşim Koca 0000-0002-4674-9549

Burak Emre Söğüt Bu kişi benim 0000-0003-0008-4526

Sona Mardikyan 0000-0001-6965-2371

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Koca, Y., Söğüt, B. E., & Mardikyan, S. (2019). Sadakat Programında Müşteri Kayıp Tahmini: Bir Vaka Çalışması. Journal of Information Systems and Management Research, 1(1), 59-66.