Araştırma Makalesi
BibTex RIS Kaynak Göster

Mechanical and Structural Properties of Graphene-Si3N4 Reinforced Hydroxyapatite Nanocomposites

Yıl 2022, , 978 - 989, 01.06.2022
https://doi.org/10.21597/jist.1035798

Öz

It is known that hydroxyapatite is similar to the inorganic structure of bones and teeth. However, the use of pure HA in bone-tooth implants is limited because it has low mechanical properties. To overcome this problem, composites can be formed with various bio-ceramics. In this study, it was aimed to produce a new biocompatible composite material with high mechanical strength by adding different amounts of graphene and a constant amount of Si3N4 to HA. 5 different Hydroxyapatite-Silicon Nitride-Graphene bio composites with different reinforcement ratios were turned into pellets with the help of a single-axis press and sintered at 1 100 oC for 2 hours to gain final strength. The densities of the samples were determined according to the Archimedes principle, the microstructure was analysed by scanning electron microscopy (SEM) and the formed phases were determined by XRD analysis. In addition, the hardness of the samples was measured with Microvickers. As a result of the studies, it was determined that the hardness and density values increased by adding graphene and Si3N4 to HA. In addition, mechanisms that increase fracture toughness were observed in SEM images.

Kaynakça

  • Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A, Rahaman, M N, 2008. Testing of silicon nitride ceramic bearings for total hip arthroplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 87(2), 447-454.
  • Bal B S, Rahaman M, 2012. Orthopedic applications of silicon nitride ceramics. Acta biomaterialia, 8(8), 2889-2898.
  • Baradaran S, Moghaddam E, Basirun W J, Mehrali M, Sookhakian M, Hamdi M, Alias Y, 2014. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69, 32-45.
  • Bonfield W, Grynpas M, Tully A, Bowman J, Abram J,1981. Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement. Biomaterials, 2(3), 185-186.
  • Catauro M, Bollino F, Papale F, Ferrara C, Mustarelli P,2015. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating. Materials Science and Engineering: C, 55, 118-125.
  • Crowder S W, Prasai D, Rath R, Balikov D A, Bae H, Bolotin K I, Sung H J,2013. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 5(10), 4171-4176.
  • Demircan G, Kisa M, Ozen M, Acikgoz A, 2021. Quasi-Static Penetration Behavior of Glass-Fiber-Reinforced Epoxy Nanocomposites. Mechanics of Composite Materials, 1-14.
  • Demircan G, Kisa M, Özen M, Açikgöz A, Aktaş B, Ali Kurt M, 2020. A bio-based epoxy resin from rosin powder with improved mechanical performance. Emerging Materials Research, 9(4), 1076-1081.
  • Dusza J, Sajgalik P, 1995. Fracture toughness and strength testing of ceramic composites. Handbook of advanced materials testing(A 95-20351 04-23), New York, Marcel Dekker, Inc.(Materials Engineering., 9, 399-435.
  • Erkmen Z, Genc Y, Oktar F, 2007. Microstructural and mechanical properties of hydroxyapatite–zirconia composites. Journal of the American Ceramic Society, 90(9), 2885-2892.
  • Gao Y, Cao W L, Wang X Y, Gong Y D, Tian J M, Zhao N M, Zhang X F, 2006. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone. Journal of Materials Science: Materials in Medicine, 17(9), 815-823.
  • Goller G, Demirkıran H, Oktar F N, Demirkesen E, 2003. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceramics international, 29(6), 721-724.
  • Goodman S B, Yao Z, Keeney M, Yang F,2013. The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174-3183.
  • Guedes e Silva C C, König Jr B, Carbonari M J, Yoshimoto M, Allegrini Jr S, Bressiani J C, 2008. Tissue response around silicon nitride implants in rabbits. Journal of Biomedical Materials Research Part A, 84(2), 337-343. Gunduz O, Gode C, Ahmad Z, Gökçe H, Yetmez M, Kalkandelen C, Oktar F, 2014. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. journal of the mechanical behavior of biomedical materials, 35, 70-76.
  • Kvetková L, Duszová A, Kašiarová M, Dorčáková F, Dusza J, Balázsi C, 2013. Influence of processing on fracture toughness of Si3N4+ graphene platelet composites. Journal of the European Ceramic Society, 33(12), 2299-2304.
  • Lahiri D, Ghosh S, Agarwal A, 2012. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Materials Science and Engineering: C, 32(7), 1727-1758.
  • Lahiri D, Singh V, Keshri A K, Seal S, Agarwal A, 2010. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon, 48(11), 3103-3120.
  • Lee W C, Lim C H Y, Shi H, Tang L A, Wang Y, Lim C T, Loh K P, 2011. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano, 5(9), 7334-7341.
  • Li J, Liao H, Hermansson L,1996. Sintering of partially-stabilized zirconia and partially-stabilized zirconia—hydroxyapatite composites by hot isostatic pressing and pressureless sintering. Biomaterials, 17(18), 1787-1790.
  • Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Wei S, 2013. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Journal of Materials Chemistry B, 1(4), 475-484.
  • Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Zheng Y, 2018. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials, 3(1), 1-18.
  • Mazzocchi M, Bellosi A, 2008. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity. Journal of Materials Science: Materials in Medicine, 19(8), 2881-2887.
  • Nayak T R, Andersen H, Makam V S, Khaw C, Bae S, Xu X, Pastorin G, 2011. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS nano, 5(6), 4670-4678. Nie C, Ma L, Li S, Fan X, Yang Y, Cheng C, Zhao C, 2019. Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today, 26, 57-97.
  • Nordström E, Yokobori Jr A, Yokobori T, Aizawa Y, 1998. Fracture toughness of hydroxyapatite/mica composite, packed hydroxyapatite, alumina ceramics, silicon nitride and‐carbide. Bio-medical materials and engineering, 8(1), 37-43.
  • Nosrati H, Mamoory R S, Le D Q S, Bünger C E, 2019. Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond and Related Materials, 100, 107561.
  • Nosrati H, Sarraf-Mamoory R, Ahmadi A H, Canillas Perez M, 2020. Synthesis of graphene nanoribbons–hydroxyapatite nanocomposite applicable in biomedicine and theranostics. Journal of Nanotheranostics, 1(1), 6-18. Oktar F, Sayrak H, Ozsoy S, Heybeli N, 2001. Histological study on a novel bone graft substitute: Human derived tooth-hydroxyapatite compared with coralline hydroxyapatite. Paper presented at the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Precnerová M, Bodišová K, Frajkorová F, Galusková D, Nováková Z V, Vojtaššák J, Šajgalík P, 2015. In vitro bioactivity of silicon nitride–hydroxyapatite composites. Ceramics International, 41(6), 8100-8108.
  • Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Wu J, 2018. Advances on graphene-based nanomaterials for biomedical applications. Materials Science and Engineering: C, 90, 764-780.
  • Ramires P, Romito A, Cosentino F, Milella E, 2001. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 22(12), 1467-1474.
  • Rodríguez-Lorenzo L M, Benito-Garzón L, Barroso-Bujans F, Fernández M, 2009. Synthesis and biocompatibility of hydroxyapatite in a graphite oxide matrix. Paper presented at the Key Engineering Materials.
  • Shin S R, Li Y-C, Jang H L, Khoshakhlagh P, Akbari M, Nasajpour A, Khademhosseini A, 2016. Graphene-based materials for tissue engineering. Advanced drug delivery reviews, 105, 255-274.
  • Silva C C G, Rigo E C d S, Marchi J, Bressiani A H d A, Bressiani J C, 2008. Hydroxyapatite coating on silicon nitride surfaces using the biomimetic method. Materials Research, 11, 47-50.
  • Silva V, Lameiras F, 2000. Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite. Materials Characterization, 45(1), 51-59.
  • Valério P, Oktar F N, Ozyegin L, Goller G, Goes A, Leite M F,2004. Biocompatibility evaluation of dentine, enamel and bone derived hydroxyapatite.
  • Walker L S, Marotto V R, Rafiee M A, Koratkar N, Corral E L, 2011. Toughening in graphene ceramic composites. ACS nano, 5(4), 3182-3190.
  • Wang P E, Chaki T, 1993. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. Journal of Materials Science: Materials in Medicine, 4(2), 150-158.
  • Wang S, Zhang S, Wang Y, Sun X, Sun K, 2017. Reduced graphene oxide/carbon nanotubes reinforced calcium phosphate cement. Ceramics International, 43(16), 13083-13088.
  • Webster T J, Patel A A, Rahaman M, Bal B S, 2012. Anti-infective and osteointegration properties of silicon nitride, poly (ether ether ketone), and titanium implants. Acta biomaterialia, 8(12), 4447-4454.
  • Yoon H H, Bhang S H, Kim T, Yu T, Hyeon T, Kim B S, 2014. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier. Advanced Functional Materials, 24(41), 6455-6464.
  • Zanin H, Saito E, Marciano F R, Ceragioli H J, Granato A E C, Porcionatto M, Lobo A O, 2013. Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive

Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri

Yıl 2022, , 978 - 989, 01.06.2022
https://doi.org/10.21597/jist.1035798

Öz

Hidroksiapatitin (HA) kemik ve dişlerin inorganik yapısına benzerlik gösterdiği bilinmektedir. Fakat düşük mekanik özelliklere sahip olduğu için saf haldeki HA’nın kemik-diş implantlarında kullanımı sınırlıdır. Bu sorunun üstesinden gelmek için çeşitli biyo seramikler kullanılarak kompozit oluşturulabilir. Bu çalışmada HA’ya farklı miktarlarda grafen ve sabit miktarda Si3N4 takviye edilmesiyle yüksek mekanik dayanıma sahip ve biyouyumlu yeni bir kompozit malzeme üretilmesi amaçlanmıştır. Farklı miktarlarda takviye oranlarına sahip 5 farklı Hidroksiapatit- Silisyum Nitrür- Grafen biyokompozitler tek eksenli pres yardımıyla pellet haline getirilmiş ve nihai mukavemeti kazanması içinde 1100 °C sıcaklıkta 2 saat sinterlenmiştir. Numunelerin yoğunlukları Arşimet prensibine göre belirlenmiş, mikro yapısı taramalı elektron mikroskobu (SEM) ile analiz edilmiştir ve oluşan fazlar XRD analizi ile tespit edilmiştir. Ayrıca numunelerin sertlikleri Microvickers ile ölçülmüştür. Yapılan çalışmalar sonucunda HA’ya grafen ve Si3N4 takviye edilmesiyle sertlik ve yoğunluk değerlerinin arttığı tespit edilmiştir. Ayrıca SEM görüntülerinde kırılma tokluğunu arttıran mekanizmalar gözlemlenmiştir.

Kaynakça

  • Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A, Rahaman, M N, 2008. Testing of silicon nitride ceramic bearings for total hip arthroplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 87(2), 447-454.
  • Bal B S, Rahaman M, 2012. Orthopedic applications of silicon nitride ceramics. Acta biomaterialia, 8(8), 2889-2898.
  • Baradaran S, Moghaddam E, Basirun W J, Mehrali M, Sookhakian M, Hamdi M, Alias Y, 2014. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69, 32-45.
  • Bonfield W, Grynpas M, Tully A, Bowman J, Abram J,1981. Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement. Biomaterials, 2(3), 185-186.
  • Catauro M, Bollino F, Papale F, Ferrara C, Mustarelli P,2015. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating. Materials Science and Engineering: C, 55, 118-125.
  • Crowder S W, Prasai D, Rath R, Balikov D A, Bae H, Bolotin K I, Sung H J,2013. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 5(10), 4171-4176.
  • Demircan G, Kisa M, Ozen M, Acikgoz A, 2021. Quasi-Static Penetration Behavior of Glass-Fiber-Reinforced Epoxy Nanocomposites. Mechanics of Composite Materials, 1-14.
  • Demircan G, Kisa M, Özen M, Açikgöz A, Aktaş B, Ali Kurt M, 2020. A bio-based epoxy resin from rosin powder with improved mechanical performance. Emerging Materials Research, 9(4), 1076-1081.
  • Dusza J, Sajgalik P, 1995. Fracture toughness and strength testing of ceramic composites. Handbook of advanced materials testing(A 95-20351 04-23), New York, Marcel Dekker, Inc.(Materials Engineering., 9, 399-435.
  • Erkmen Z, Genc Y, Oktar F, 2007. Microstructural and mechanical properties of hydroxyapatite–zirconia composites. Journal of the American Ceramic Society, 90(9), 2885-2892.
  • Gao Y, Cao W L, Wang X Y, Gong Y D, Tian J M, Zhao N M, Zhang X F, 2006. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone. Journal of Materials Science: Materials in Medicine, 17(9), 815-823.
  • Goller G, Demirkıran H, Oktar F N, Demirkesen E, 2003. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceramics international, 29(6), 721-724.
  • Goodman S B, Yao Z, Keeney M, Yang F,2013. The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174-3183.
  • Guedes e Silva C C, König Jr B, Carbonari M J, Yoshimoto M, Allegrini Jr S, Bressiani J C, 2008. Tissue response around silicon nitride implants in rabbits. Journal of Biomedical Materials Research Part A, 84(2), 337-343. Gunduz O, Gode C, Ahmad Z, Gökçe H, Yetmez M, Kalkandelen C, Oktar F, 2014. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. journal of the mechanical behavior of biomedical materials, 35, 70-76.
  • Kvetková L, Duszová A, Kašiarová M, Dorčáková F, Dusza J, Balázsi C, 2013. Influence of processing on fracture toughness of Si3N4+ graphene platelet composites. Journal of the European Ceramic Society, 33(12), 2299-2304.
  • Lahiri D, Ghosh S, Agarwal A, 2012. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Materials Science and Engineering: C, 32(7), 1727-1758.
  • Lahiri D, Singh V, Keshri A K, Seal S, Agarwal A, 2010. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon, 48(11), 3103-3120.
  • Lee W C, Lim C H Y, Shi H, Tang L A, Wang Y, Lim C T, Loh K P, 2011. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano, 5(9), 7334-7341.
  • Li J, Liao H, Hermansson L,1996. Sintering of partially-stabilized zirconia and partially-stabilized zirconia—hydroxyapatite composites by hot isostatic pressing and pressureless sintering. Biomaterials, 17(18), 1787-1790.
  • Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Wei S, 2013. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Journal of Materials Chemistry B, 1(4), 475-484.
  • Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Zheng Y, 2018. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials, 3(1), 1-18.
  • Mazzocchi M, Bellosi A, 2008. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity. Journal of Materials Science: Materials in Medicine, 19(8), 2881-2887.
  • Nayak T R, Andersen H, Makam V S, Khaw C, Bae S, Xu X, Pastorin G, 2011. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS nano, 5(6), 4670-4678. Nie C, Ma L, Li S, Fan X, Yang Y, Cheng C, Zhao C, 2019. Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today, 26, 57-97.
  • Nordström E, Yokobori Jr A, Yokobori T, Aizawa Y, 1998. Fracture toughness of hydroxyapatite/mica composite, packed hydroxyapatite, alumina ceramics, silicon nitride and‐carbide. Bio-medical materials and engineering, 8(1), 37-43.
  • Nosrati H, Mamoory R S, Le D Q S, Bünger C E, 2019. Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond and Related Materials, 100, 107561.
  • Nosrati H, Sarraf-Mamoory R, Ahmadi A H, Canillas Perez M, 2020. Synthesis of graphene nanoribbons–hydroxyapatite nanocomposite applicable in biomedicine and theranostics. Journal of Nanotheranostics, 1(1), 6-18. Oktar F, Sayrak H, Ozsoy S, Heybeli N, 2001. Histological study on a novel bone graft substitute: Human derived tooth-hydroxyapatite compared with coralline hydroxyapatite. Paper presented at the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Precnerová M, Bodišová K, Frajkorová F, Galusková D, Nováková Z V, Vojtaššák J, Šajgalík P, 2015. In vitro bioactivity of silicon nitride–hydroxyapatite composites. Ceramics International, 41(6), 8100-8108.
  • Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Wu J, 2018. Advances on graphene-based nanomaterials for biomedical applications. Materials Science and Engineering: C, 90, 764-780.
  • Ramires P, Romito A, Cosentino F, Milella E, 2001. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 22(12), 1467-1474.
  • Rodríguez-Lorenzo L M, Benito-Garzón L, Barroso-Bujans F, Fernández M, 2009. Synthesis and biocompatibility of hydroxyapatite in a graphite oxide matrix. Paper presented at the Key Engineering Materials.
  • Shin S R, Li Y-C, Jang H L, Khoshakhlagh P, Akbari M, Nasajpour A, Khademhosseini A, 2016. Graphene-based materials for tissue engineering. Advanced drug delivery reviews, 105, 255-274.
  • Silva C C G, Rigo E C d S, Marchi J, Bressiani A H d A, Bressiani J C, 2008. Hydroxyapatite coating on silicon nitride surfaces using the biomimetic method. Materials Research, 11, 47-50.
  • Silva V, Lameiras F, 2000. Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite. Materials Characterization, 45(1), 51-59.
  • Valério P, Oktar F N, Ozyegin L, Goller G, Goes A, Leite M F,2004. Biocompatibility evaluation of dentine, enamel and bone derived hydroxyapatite.
  • Walker L S, Marotto V R, Rafiee M A, Koratkar N, Corral E L, 2011. Toughening in graphene ceramic composites. ACS nano, 5(4), 3182-3190.
  • Wang P E, Chaki T, 1993. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. Journal of Materials Science: Materials in Medicine, 4(2), 150-158.
  • Wang S, Zhang S, Wang Y, Sun X, Sun K, 2017. Reduced graphene oxide/carbon nanotubes reinforced calcium phosphate cement. Ceramics International, 43(16), 13083-13088.
  • Webster T J, Patel A A, Rahaman M, Bal B S, 2012. Anti-infective and osteointegration properties of silicon nitride, poly (ether ether ketone), and titanium implants. Acta biomaterialia, 8(12), 4447-4454.
  • Yoon H H, Bhang S H, Kim T, Yu T, Hyeon T, Kim B S, 2014. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier. Advanced Functional Materials, 24(41), 6455-6464.
  • Zanin H, Saito E, Marciano F R, Ceragioli H J, Granato A E C, Porcionatto M, Lobo A O, 2013. Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Mustafa Özen 0000-0002-0282-9387

Ruken Daş 0000-0001-7423-7711

Abuzer Açıkgöz 0000-0002-2648-3560

Bülent Aktaş 0000-0002-9396-1534

Gökhan Demircan 0000-0002-9579-6878

Levent Nazim Hançer 0000-0001-9171-097X

Mehmet Vehbi Balak 0000-0002-1374-2199

Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 12 Aralık 2021
Kabul Tarihi 26 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özen, M., Daş, R., Açıkgöz, A., Aktaş, B., vd. (2022). Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Journal of the Institute of Science and Technology, 12(2), 978-989. https://doi.org/10.21597/jist.1035798
AMA Özen M, Daş R, Açıkgöz A, Aktaş B, Demircan G, Hançer LN, Balak MV. Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2022;12(2):978-989. doi:10.21597/jist.1035798
Chicago Özen, Mustafa, Ruken Daş, Abuzer Açıkgöz, Bülent Aktaş, Gökhan Demircan, Levent Nazim Hançer, ve Mehmet Vehbi Balak. “Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik Ve Yapısal Özellikleri”. Journal of the Institute of Science and Technology 12, sy. 2 (Haziran 2022): 978-89. https://doi.org/10.21597/jist.1035798.
EndNote Özen M, Daş R, Açıkgöz A, Aktaş B, Demircan G, Hançer LN, Balak MV (01 Haziran 2022) Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Journal of the Institute of Science and Technology 12 2 978–989.
IEEE M. Özen, R. Daş, A. Açıkgöz, B. Aktaş, G. Demircan, L. N. Hançer, ve M. V. Balak, “Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 2, ss. 978–989, 2022, doi: 10.21597/jist.1035798.
ISNAD Özen, Mustafa vd. “Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik Ve Yapısal Özellikleri”. Journal of the Institute of Science and Technology 12/2 (Haziran 2022), 978-989. https://doi.org/10.21597/jist.1035798.
JAMA Özen M, Daş R, Açıkgöz A, Aktaş B, Demircan G, Hançer LN, Balak MV. Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:978–989.
MLA Özen, Mustafa vd. “Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik Ve Yapısal Özellikleri”. Journal of the Institute of Science and Technology, c. 12, sy. 2, 2022, ss. 978-89, doi:10.21597/jist.1035798.
Vancouver Özen M, Daş R, Açıkgöz A, Aktaş B, Demircan G, Hançer LN, Balak MV. Grafen-Si3N4 Takviyeli Hidroksiapatit Nanokompozitlerin Mekanik ve Yapısal Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(2):978-89.