Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Some Phenolic Compounds as Inhibitors of Glutatione S-Transferase Enzyme

Yıl 2022, , 882 - 889, 01.06.2022
https://doi.org/10.21597/jist.1040831

Öz

Glutathione S-transferases (GSTs) are important antioxidant enzyme and catalyze the conjugation of glutathione with toxic metabolites. In this study, potential inhibitory effects of some phenolic compounds on the activity of GST enzyme were tested in vitro. The IC50 values of morine hydrate, esculetin hydrate, p-coumaric acid and syringaldehyde phenolic compounds are found as 0.718 μM, 0.713 μM, 0.701 μM, and 0.699 μM, respectively. Ki values are found as 1.610±0.120, 0.179±0.019, 4.590±0.480, 0.999±0.070, respectively. According to these results, esculetin hydrate showed the best inhibition effect and competitive inhibition.

Kaynakça

  • Aksoy M, Küfrevioglu I. 2017. Inhibition of human erythrocyte glutathione S-transferase by some flavonoid derivatives. Toxin Rev 37: 251–257.
  • Aksoy M, Ozaslan MS, Kufrevioglu OI, 2016. Purification of glutathione S-transferase from Van Lake fish (Chalcalburnus tarichii Pallas) muscle and investigation of some metal ions effect on enzyme activity. Journal of enzyme inhibition and medicinal chemistry, 31(4): 546-550.
  • Aslan HE, Demir Y, Özaslan MS, Türkan F, Beydemir Ş, Küfrevioğlu ÖI, 2020. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug and chemical toxicology, 42(6): 634-640.
  • Aslan HE, Beydemir S, 2017. Phenolic compounds: the inhibition effect on polyol pathway enzymes. Chemico-biological interactions 266: 47 – 55.
  • Atalar MN, Aras A, Türkan F, Barlak N, Yildiko Ü, Karatas OF, Alma MH, 2021. The effects of Daucus carota extract against PC3, PNT1a prostate cells, acetylcholinesterase, glutathione S-transferase, and α-glycosidase; an in vitro–in silico study. Journal of Food Biochemistry, 45(12): e13975.
  • Bayrak S, Öztürk C, Demir Y, Alım Z, Küfrevioglu Öİ, 2020. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein and peptide letters, 27(3): 187-192.
  • Board PG, Menon D, 2013. Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et biophysica acta (bba)-general subjects, 1830(5): 3267-3288.
  • Buravlev EV, Dvornikova IA, Schevchenko OG, Kutchin AV, 2019. Synthesis and Antioxidant Ability of Novel Derivatives Based on para‐Coumaric Acid Containing Isobornyl Groups. Chemistry & biodiversity, 16(10): e1900362.
  • Ceylan H, Demir Y, Beydemir Ş, 2019. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study. Protein and Peptide Letters. 26 (5): 364 – 370.
  • Demir Y, 2019. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. Journal of pharmacy and pharmacology, 71(10): 1576-1583.
  • Demir Y, 2020. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug development research, 81(5): 628-636.
  • Demir Y, Ceylan H, Türkeş C, Beydemir Ş, 2021. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2021.1967195
  • Demir Y, Durmaz L, Taslimi P, Gulçin İ, 2019. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnology and applied biochemistry, 66(5): 781-786.
  • Demir Y, Isık M, Gulcin I, Beydemir S, 2017. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Journal of Biochemical and Molecular Toxicology, 31(9): e21935.7
  • Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir, Ş, 2019. Inhibition effects of quinones on aldose reductase: antidiabetic properties. Environmental toxicology and pharmacology, 70: 103195.
  • Erat M, Sakiroglu H, 2013. The effect of some antineoplastic agents on glutathione S-transferase from human erythrocytes. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4): 711.
  • Gulcin I, Scozzafava A, Supuran CT, Akıncıoglu H, Koksal Z, Turkan F, Alwasel S, 2016b. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (6): 1095.
  • Gulcin I, Scozzafava A, Supuran CT, Koksal Z, Turkan F, Cetinkaya S, Bingol Z, Huyut Z, Alwasel SH, 2016a. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1698.
  • Gulçin İ, Taslimi P, Aygün, A, Sadeghian N, Bastem E, Kufrevioglu OI, Şen F, 2018. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International journal of biological macromolecules, 119: 741-746.
  • Gülçin İ, Beydemir S, 2013. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Reviews in Medicinal Chemistry, 13(3): 408-430.
  • Gülçin İ, Elias R, Gepdiremen A, Boyer L, 2006. Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.) European Food Research and Technology, 223: 759.
  • Ibrahim MNM, Balakrishnan RS, Shamsudeen S, Bahwani SA, Adam F, 2012. A concise review of the natural existance, synthesis, properties, and applications of syringaldehyde. BioResources, 7(3): 4377-4399.
  • Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir, Ş. 2021. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie, 354(3): 2000282.
  • Kirici M, Kirici M, Demir Y, Beydemir S, Atamanalp M, 2016. The effect of Al+3 and Hg+ 2 on glucose 6-phosphate dehydrogenase from capoeta umbla kidney. Applied ecology and environmental research, 14(2): 253-264.
  • Lineweaver H, Burk D, 1934. The determination of enzyme dissociation constants. Journal of the American chemical society, 56(3): 658-666.
  • Mahajan S, Atkins WM, 2005. The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cellular and Molecular Life Sciences, 62: 1221 – 1233.
  • Mazzetti AP, Maria MC, Primavera A, Bello ML, 2015. Glutathione transferases and neurodegenerative diseases. Neurochemistry international, 8: 10–18.
  • Morales GA, Laborde E, 2007. Small-molecule inhibitors of glutathione S-transferase P1-1 as anticancer therapeutic agents. Annual reports in medicinal chemistry, 42: 321-335.
  • Olonode ET, Aderibigbe AO, Adeoluwa OA, Eduviere AT, Ben-Azu B, 2019. Morin hydrate mitigates rapid eye movement sleep deprivation-induced neurobehavioural impairments and loss of viable neurons in the hippocampus of mice. Behavioural brain research, 356: 518–525.
  • Ozaslan MS, Demir Y, Kufrevioglu OI, Ciftci M, 2017. Some metals inhibit the Glutathione S-transferase from Van Lake fish gills. Journal of Biochemical and Molecular Toxicology, 31(11): e21967.
  • Özaslan MS, Demir Y, Aksoy M, Küfrevioğlu ÖI, Beydemir Ş, 2018a. Inhibition effects of pesticides on glutathione‐S‐transferase enzyme activity of Van Lake fish liver. Journal of biochemical and molecular toxicology, 32(9): e22196.
  • Özaslan MS, Demir Y, Aslan HE, Beydemir Ş, Küfrevioğlu Öİ, 2018b. Evaluation of chalcones as inhibitors of glutathione S‐transferase. Journal of biochemical and molecular toxicology, 32(5): e22047.
  • Pizzorno J, 2014. Glutathione!. Integrative medicine (Encinitas, Calif.), 13(1), 8–12.
  • Rajput SA, Wang XQ, Yan HC, 2021. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomedicine & pharmacotherapy, 138: 111511
  • Sever B, Türkeş C, Altıntop M. D, Demir Y, Beydemir, Ş. 2020. Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163: 1970-1988.
  • Subramaniam SR, Ellis EM, 2013. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. Journal of neuroscience research, 91(3): 453–461.
  • Townsend DM, Tew KD, 2003. The role of glutathione-S-transferase in anti-cancer drug resistance. Onkogen, 22: 7369 – 7375.
  • Türkan F, Huyut Z, Demir Y, Ertaş F, Beydemir Ş, 2019. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of physiology and biochemistry, 125(3): 235-243.
  • Türkeş C, Demir Y, Beydemir, Ş. 2021c. Calcium channel blockers: Molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure and Dynamics, 39(5): 1672-1680.
  • Türkeş C, Kesebir AÖ, Demir Y, Küfrevioğlu Öİ, Beydemir Ş. 2021b. Calcium Channel Blockers: The Effect of Glutathione S‐Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect, 6(40): 11137-11143.
  • Türkeş, C, Demir, Y, Beydemir, Ş. 2021a. Infection Medications: Assessment In‐Vitro Glutathione S‐Transferase Inhibition and Molecular Docking Study. ChemistrySelect, 6(43): 11915-11924.
  • Yancheva D, Velcheva, E, Glavcheva Z, Stamboliyska B, Smelcerovic A, 2016. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure, 1108: 552-559.
  • Yang X, Liu G, Li H, Zhang Y, Song D, Li C, Zhao G, 2010. Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure− activity relationships in inhibiting the activity of glutathione S-transferase P1-1 and cancer cell proliferation. Journal of medicinal chemistry, 53(3): 1015-1022.
  • Zhao G, Liu, C, Wang, R, Song, D, Wang X, Lou H, Jing Y, 2007. The synthesis of α, β-unsaturated carbonyl derivatives with the ability to inhibit both glutathione S-transferase P1-1 activity and the proliferation of leukemia cells. Bioorganic & medicinal chemistry, 15(7): 2701-2707.

Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi

Yıl 2022, , 882 - 889, 01.06.2022
https://doi.org/10.21597/jist.1040831

Öz

Glutatyon S-transferazlar (GSTs) önemli antioksidan enzim sınıfındadırlar ve glutatyonun toksik metabolitlerle konjugasyonunu katalize ederler. Yapılan bu çalışmada, bazı fenolik bileşiklerin GST enziminin aktivitesi üzerine potansiyel inhibisyon etkileri in vitro olarak test edilmiştir. Morin hidrat, eskuletin hidrat, p-kumarik asit ve siringaldehit fenolik bileşiklerinin GST enzimi üzerine IC50 değerleri sırasıyla 0.718 μM, 0.713 μM, 0.701 μM ve 0.699 μM olarak bulunmuştur. Ki değerleri ise sırasıyla 1.610±0.120, 0.179± 0.019, 4.590±0.480, 0.999±0.070 olarak bulunmuştur. Bu sonuçlara göre en iyi inhibisyon etkisini eskuletin hidrat göstermiş olup yarışmalı inhibisyon türü sergilemiştir.

Kaynakça

  • Aksoy M, Küfrevioglu I. 2017. Inhibition of human erythrocyte glutathione S-transferase by some flavonoid derivatives. Toxin Rev 37: 251–257.
  • Aksoy M, Ozaslan MS, Kufrevioglu OI, 2016. Purification of glutathione S-transferase from Van Lake fish (Chalcalburnus tarichii Pallas) muscle and investigation of some metal ions effect on enzyme activity. Journal of enzyme inhibition and medicinal chemistry, 31(4): 546-550.
  • Aslan HE, Demir Y, Özaslan MS, Türkan F, Beydemir Ş, Küfrevioğlu ÖI, 2020. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug and chemical toxicology, 42(6): 634-640.
  • Aslan HE, Beydemir S, 2017. Phenolic compounds: the inhibition effect on polyol pathway enzymes. Chemico-biological interactions 266: 47 – 55.
  • Atalar MN, Aras A, Türkan F, Barlak N, Yildiko Ü, Karatas OF, Alma MH, 2021. The effects of Daucus carota extract against PC3, PNT1a prostate cells, acetylcholinesterase, glutathione S-transferase, and α-glycosidase; an in vitro–in silico study. Journal of Food Biochemistry, 45(12): e13975.
  • Bayrak S, Öztürk C, Demir Y, Alım Z, Küfrevioglu Öİ, 2020. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein and peptide letters, 27(3): 187-192.
  • Board PG, Menon D, 2013. Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et biophysica acta (bba)-general subjects, 1830(5): 3267-3288.
  • Buravlev EV, Dvornikova IA, Schevchenko OG, Kutchin AV, 2019. Synthesis and Antioxidant Ability of Novel Derivatives Based on para‐Coumaric Acid Containing Isobornyl Groups. Chemistry & biodiversity, 16(10): e1900362.
  • Ceylan H, Demir Y, Beydemir Ş, 2019. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study. Protein and Peptide Letters. 26 (5): 364 – 370.
  • Demir Y, 2019. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. Journal of pharmacy and pharmacology, 71(10): 1576-1583.
  • Demir Y, 2020. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug development research, 81(5): 628-636.
  • Demir Y, Ceylan H, Türkeş C, Beydemir Ş, 2021. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2021.1967195
  • Demir Y, Durmaz L, Taslimi P, Gulçin İ, 2019. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnology and applied biochemistry, 66(5): 781-786.
  • Demir Y, Isık M, Gulcin I, Beydemir S, 2017. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Journal of Biochemical and Molecular Toxicology, 31(9): e21935.7
  • Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir, Ş, 2019. Inhibition effects of quinones on aldose reductase: antidiabetic properties. Environmental toxicology and pharmacology, 70: 103195.
  • Erat M, Sakiroglu H, 2013. The effect of some antineoplastic agents on glutathione S-transferase from human erythrocytes. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(4): 711.
  • Gulcin I, Scozzafava A, Supuran CT, Akıncıoglu H, Koksal Z, Turkan F, Alwasel S, 2016b. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (6): 1095.
  • Gulcin I, Scozzafava A, Supuran CT, Koksal Z, Turkan F, Cetinkaya S, Bingol Z, Huyut Z, Alwasel SH, 2016a. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1698.
  • Gulçin İ, Taslimi P, Aygün, A, Sadeghian N, Bastem E, Kufrevioglu OI, Şen F, 2018. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International journal of biological macromolecules, 119: 741-746.
  • Gülçin İ, Beydemir S, 2013. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Reviews in Medicinal Chemistry, 13(3): 408-430.
  • Gülçin İ, Elias R, Gepdiremen A, Boyer L, 2006. Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.) European Food Research and Technology, 223: 759.
  • Ibrahim MNM, Balakrishnan RS, Shamsudeen S, Bahwani SA, Adam F, 2012. A concise review of the natural existance, synthesis, properties, and applications of syringaldehyde. BioResources, 7(3): 4377-4399.
  • Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir, Ş. 2021. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie, 354(3): 2000282.
  • Kirici M, Kirici M, Demir Y, Beydemir S, Atamanalp M, 2016. The effect of Al+3 and Hg+ 2 on glucose 6-phosphate dehydrogenase from capoeta umbla kidney. Applied ecology and environmental research, 14(2): 253-264.
  • Lineweaver H, Burk D, 1934. The determination of enzyme dissociation constants. Journal of the American chemical society, 56(3): 658-666.
  • Mahajan S, Atkins WM, 2005. The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cellular and Molecular Life Sciences, 62: 1221 – 1233.
  • Mazzetti AP, Maria MC, Primavera A, Bello ML, 2015. Glutathione transferases and neurodegenerative diseases. Neurochemistry international, 8: 10–18.
  • Morales GA, Laborde E, 2007. Small-molecule inhibitors of glutathione S-transferase P1-1 as anticancer therapeutic agents. Annual reports in medicinal chemistry, 42: 321-335.
  • Olonode ET, Aderibigbe AO, Adeoluwa OA, Eduviere AT, Ben-Azu B, 2019. Morin hydrate mitigates rapid eye movement sleep deprivation-induced neurobehavioural impairments and loss of viable neurons in the hippocampus of mice. Behavioural brain research, 356: 518–525.
  • Ozaslan MS, Demir Y, Kufrevioglu OI, Ciftci M, 2017. Some metals inhibit the Glutathione S-transferase from Van Lake fish gills. Journal of Biochemical and Molecular Toxicology, 31(11): e21967.
  • Özaslan MS, Demir Y, Aksoy M, Küfrevioğlu ÖI, Beydemir Ş, 2018a. Inhibition effects of pesticides on glutathione‐S‐transferase enzyme activity of Van Lake fish liver. Journal of biochemical and molecular toxicology, 32(9): e22196.
  • Özaslan MS, Demir Y, Aslan HE, Beydemir Ş, Küfrevioğlu Öİ, 2018b. Evaluation of chalcones as inhibitors of glutathione S‐transferase. Journal of biochemical and molecular toxicology, 32(5): e22047.
  • Pizzorno J, 2014. Glutathione!. Integrative medicine (Encinitas, Calif.), 13(1), 8–12.
  • Rajput SA, Wang XQ, Yan HC, 2021. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomedicine & pharmacotherapy, 138: 111511
  • Sever B, Türkeş C, Altıntop M. D, Demir Y, Beydemir, Ş. 2020. Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163: 1970-1988.
  • Subramaniam SR, Ellis EM, 2013. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. Journal of neuroscience research, 91(3): 453–461.
  • Townsend DM, Tew KD, 2003. The role of glutathione-S-transferase in anti-cancer drug resistance. Onkogen, 22: 7369 – 7375.
  • Türkan F, Huyut Z, Demir Y, Ertaş F, Beydemir Ş, 2019. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of physiology and biochemistry, 125(3): 235-243.
  • Türkeş C, Demir Y, Beydemir, Ş. 2021c. Calcium channel blockers: Molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure and Dynamics, 39(5): 1672-1680.
  • Türkeş C, Kesebir AÖ, Demir Y, Küfrevioğlu Öİ, Beydemir Ş. 2021b. Calcium Channel Blockers: The Effect of Glutathione S‐Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect, 6(40): 11137-11143.
  • Türkeş, C, Demir, Y, Beydemir, Ş. 2021a. Infection Medications: Assessment In‐Vitro Glutathione S‐Transferase Inhibition and Molecular Docking Study. ChemistrySelect, 6(43): 11915-11924.
  • Yancheva D, Velcheva, E, Glavcheva Z, Stamboliyska B, Smelcerovic A, 2016. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure, 1108: 552-559.
  • Yang X, Liu G, Li H, Zhang Y, Song D, Li C, Zhao G, 2010. Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure− activity relationships in inhibiting the activity of glutathione S-transferase P1-1 and cancer cell proliferation. Journal of medicinal chemistry, 53(3): 1015-1022.
  • Zhao G, Liu, C, Wang, R, Song, D, Wang X, Lou H, Jing Y, 2007. The synthesis of α, β-unsaturated carbonyl derivatives with the ability to inhibit both glutathione S-transferase P1-1 activity and the proliferation of leukemia cells. Bioorganic & medicinal chemistry, 15(7): 2701-2707.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Muhammet Serhat Özaslan 0000-0002-5060-2048

Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 23 Aralık 2021
Kabul Tarihi 12 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özaslan, M. S. (2022). Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology, 12(2), 882-889. https://doi.org/10.21597/jist.1040831
AMA Özaslan MS. Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2022;12(2):882-889. doi:10.21597/jist.1040831
Chicago Özaslan, Muhammet Serhat. “Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology 12, sy. 2 (Haziran 2022): 882-89. https://doi.org/10.21597/jist.1040831.
EndNote Özaslan MS (01 Haziran 2022) Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology 12 2 882–889.
IEEE M. S. Özaslan, “Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 2, ss. 882–889, 2022, doi: 10.21597/jist.1040831.
ISNAD Özaslan, Muhammet Serhat. “Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology 12/2 (Haziran 2022), 882-889. https://doi.org/10.21597/jist.1040831.
JAMA Özaslan MS. Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:882–889.
MLA Özaslan, Muhammet Serhat. “Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology, c. 12, sy. 2, 2022, ss. 882-9, doi:10.21597/jist.1040831.
Vancouver Özaslan MS. Bazı Fenolik Bileşiklerin Glutatyon S-Transferaz Enzim İnhibitörleri Olarak Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(2):882-9.