Derleme
BibTex RIS Kaynak Göster

Review on Uranium(VI) Adsorption Capacities From Aqueous Solutions of Hydrogel-Based Biocomposite Adsorbents

Yıl 2022, , 1436 - 1455, 01.09.2022
https://doi.org/10.21597/jist.1079143

Öz

The use of uranium as a fuel in the nuclear energy industry has also led to an increase in mining. For this reason, there is an increase in the rate of uranium mixed into the waters. On the other hand, one of the most important problems of nuclear energy is spent fuel waste that creates radioactive pollution. Radioactive uranium and its compounds cause serious damage to the human body, kidney failure and death. Removal of uranium from water by adsorption is among the subjects that are actively studied by many research groups in terms of not posing a threat to living health. While various sorbents find their place in adsorption processes with their different potentials, hydrogel-based adsorbents stand out thanks to their swelling properties, expandable functional structures and biodegradable forms. Adsorption on hydrogel materials is due to the ionizable functional groups of the monomers in its structure. In this review, the adsorption process of uranium, which is a radioactive pollutant, was examined in terms of pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion kinetic models, and widely used Langmuir and Freundlich isotherm models, current studies on its removal with chitosan and alginate-based biocomposite sorbents were presented.

Kaynakça

  • Abou-Lilah RA, Rizk HE, Elshorbagy MA, Gamal AM, Ali AM, Badawy NA, 2020. Efficiency of bentonite in removing cesium, strontium, cobalt and uranium ions from aqueous solution: encapsulation with alginate for column application. International Journal of Environmental Analytical Chemistry, 00(00), 1–24. https://doi.org/10.1080/03067319.2020.1761348
  • Ahmad M, Ren J, Zhang Y, Kou H, Naik M, Zhang Q, Zhang B, 2022. Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chemical Engineering Journal, 427, 130934. https://doi.org/10.1016/j.cej.2021.130934
  • Akhtar K, Khalid AM, Akhtar MW, Ghauri MA, 2009. Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum. Bioresource Technology, 100(20), 4551–4558. https://doi.org/10.1016/j.biortech.2009.03.073
  • Akter M, Bhattacharjee M, Dhar AK, Rahman FBA, Haque S, Ur Rashid TU, Kabir SMF, 2021. Cellulose-based hydrogels for wastewater treatment: A concise review. Gels, 7(1), 1–28. https://doi.org/10.3390/gels7010030
  • Aljeboree AM, Alshirifi AN, Alkaim AF, 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Alvarez-Lorenzo C, Concheiro A, 2002. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 80(1–3), 247–257. https://doi.org/10.1016/S0168-3659(02)00032-9
  • Angela B, 2019. EPA ’ s flawed IRIS program is far from gold standard.
  • Anirudhan TS, Lekshmi GS, Shainy F, 2019. Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater. Journal of Colloid and Interface Science, 534, 248–261. https://doi.org/10.1016/j.jcis.2018.09.009
  • Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li S, 2015. Three novel triazine-based materials with different O/S/N set of donor atoms: One-step preparation and comparison of their capability in selective separation of uranium. Journal of Hazardous Materials, 300, 368–377. https://doi.org/10.1016/j.jhazmat.2015.07.020
  • Bai J, Fan F, Wu X, Tian W, Zhao L, Yin X, Guo J, 201). Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. Journal of Environmental Radioactivity, 126, 226–231. https://doi.org/10.1016/j.jenvrad.2013.08.010
  • Baron RI, Culica ME, Biliuta G, Bercea M, Gherman S, Zavastin D, Coseri S, 2019. Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) forwound dressing applications. Materials, 12(9). https://doi.org/10.3390/ma12091569
  • Basu H Pimple MV, Saha S, Patel A, Dansena C, Singhal RK, 2020. TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New Journal of Chemistry, 44(10), 3950–3960. https://doi.org/10.1039/c9nj06006e
  • Basu H, Singhal RK, Pimple MV, Saha S, 2018. Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. Journal of Environmental Chemical Engineering, 6(2), 1625–1633. https://doi.org/10.1016/j.jece.2018.01.065
  • Basu H, Singhal RK, Saha S, Pimple MV, 2017. Chitosan impregnated Ca-alginate: a new hybrid material for removal of uranium from potable water. Journal of Radioanalytical and Nuclear Chemistry, 314(3), 1905–1914. https://doi.org/10.1007/s10967-017-5514-5
  • Baybas D, Ulusoy U, 2011. Polyacrylamide – clinoptilolite / Y-zeolite composites : Characterization and adsorptive features for terbium. Journal of Hazardous Materials, 187, 241–249. https://doi.org/10.1016/j.jhazmat.2011.01.014
  • Bertagnolli C, Uhart A, Dupin JC, da Silva MGC, Guibal, E., Desbrieres J, 2014. Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresource Technology, 164, 264–269. https://doi.org/10.1016/j.biortech.2014.04.103
  • Birinci E, Gülfen M, Aydin AO, 2009. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy, 95(1–2), 15–21. https://doi.org/10.1016/j.hydromet.2008.04.002
  • Brugge D, De Lemos JL, Oldmixon B, 2005. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Reviews on Environmental Health, 20(3), 177–193. https://doi.org/10.1515/REVEH.2005.20.3.177
  • Burkart W, Danesi PR, Hendry JH, 2005. Properties, use and health effects of depleted uranium. International Congress Series, 1276, 133–136. https://doi.org/10.1016/j.ics.2004.09.047
  • Chen Q, Zhu L, Zhao C, Zheng J, 2012. Hydrogels for removal of heavy metals from aqueous solution. Journal of Environmental & Analytical Toxicology, 02(07). https://doi.org/10.4172/2161-0525.s2-001
  • Cheng Y, He P, Dong F, Nie X, Ding C, Wang S, Zhou S, 2019. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chemical Engineering Journal, 367(January), 198–207. https://doi.org/10.1016/j.cej.2019.02.149
  • Christou C, Philippou K, Krasia-Christoforou T, Pashalidis I, 2019. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohydrate Polymers, 219(February), 298–305. https://doi.org/10.1016/j.carbpol.2019.05.041
  • Dai Y, Zhou L, Tang X, Xi J, Ouyang J, Liu Z, Adesina AA, 2020. Macroporous ion-imprinted chitosan foams for the selective biosorption of U ( VI ) from aqueous solution. International Journal of Biological Macromolecules, 164, 4155–4164. https://doi.org/10.1016/j.ijbiomac.2020.08.238
  • De Pablo L, Chávez ML, Abatal M, 2011. Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chemical Engineering Journal, 171(3), 1276–1286. https://doi.org/10.1016/j.cej.2011.05.055
  • Ding LP, Bhatia SK, Liu F, 2002. Kinetics of adsorption on activated carbon: Application of heterogeneous vacancy solution theory. Chemical Engineering Science, 57(18), 3909–3928. https://doi.org/10.1016/S0009-2509(02)00306-8
  • Dittmar M, 2012. Nuclear energy: Status and future limitations. Energy, 37(1), 35–40. https://doi.org/10.1016/j.energy.2011.05.040
  • Douglas KT, Howlin B, Silver J, 1984. Solution Chemistry and Massbauer Study of Iron( II) and Iron( III) Complexes from Gallocyanine. Inorganica Chimica Acta, 92, 135–140.
  • Eren E, 2009. Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. Journal of Hazardous Materials, 166(1), 88–93. https://doi.org/10.1016/j.jhazmat.2008.11.011
  • Favre-Réguillon A, Lebuzit G, Murat D, Foos J, Mansour C, Draye M, 2008. Selective removal of dissolved uranium in drinking water by nanofiltration. Water Research, 42(4–5), 1160–1166. https://doi.org/10.1016/j.watres.2007.08.034
  • Gao X, Guo C, Hao J, Zhao Z, Long H, Li M, 2020. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046
  • Gao X, Li M, Zhao Y, Zhang Y, 2019. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chemical Engineering Journal, 378(April), 122096. https://doi.org/10.1016/j.cej.2019.122096
  • Gao X, Liu J, Li M, Guo C, Long H, Zhang Y, Xin L, 2020. Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chemical Engineering Journal, 385(October 2019), 123897. https://doi.org/10.1016/j.cej.2019.123897
  • Ghimire KN, Inoue K, Ohto K, Hayashida T, 2007. Adsorptive separation of metallic pollutants onto waste seaweeds, Porphyra yezoensis and Ulva japonica. Separation Science and Technology, 42(9), 2003–2018. https://doi.org/10.1080/15363830701313461
  • Gok C, Aytas S, 2009. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 168(1), 369–375. https://doi.org/10.1016/j.jhazmat.2009.02.063
  • Gu B, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Jardine PM, 2005. Bioreduction of uranium in a contaminated soil column. Environmental Science and Technology, 39(13), 4841–4847. https://doi.org/10.1021/es050011y
  • Han C, Yue Y, Xu X, Cai D, Liu Z, Chen S,Wang D, 2020. Dual crosslinked polyamidoxime/alginate sponge for robust and efficient uranium adsorption from aqueous solution. New Journal of Chemistry, 44(45), 19445–19449. https://doi.org/10.1039/d0nj04209a
  • Ho YS, McKay G, 1999a. Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1021/acs.oprd.7b00090
  • Ho YS, McKay G, 1999b. The sorption of lead(II) ions on peat. Water Research, 33(2), 578–584. https://doi.org/10.1016/S0043-1354(98)00207-3
  • Hore-Lacy I, 2016. Uranium for nuclear power: An introduction. In Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100307-7.00001-6
  • Hu S, Lin X, Zhang Y, Huang R, Qu Y, Luo X, Zhou J, 2017. Preparation and application of alginate-Ca/attapulgite clay core/shell particle for the removal of uranium from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 314(1), 307–319. https://doi.org/10.1007/s10967-017-5427-3
  • Huang G, Peng W, Yang S, 2018. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 337–344. https://doi.org/10.1007/s10967-018-5850-0
  • Huang G, Li W, Liu Q, Liu J, Zhang H, Li R, Wang J, 2018. Efficient removal of uranium(VI) from simulated seawater with hyperbranched polyethylenimine (HPEI)-functionalized polyacrylonitrile fibers. New Journal of Chemistry, 42(1), 168–176. https://doi.org/10.1039/c7nj03243a
  • İnan S, Mumcu T, Bozkurt SS, 2020. Box – Behnken design for removal of uranium(VI) from aqueous solution using poly(ethylene glycol) based dicationic ionic liquid impregnated chitosan. Turkish Journal of Chemistry, 44, 756–774. https://doi.org/10.3906/kim-1911-73
  • Inglezakis VJ, Balsamo M, Montagnaro F, 2020. Liquid-solid mass transfer in adsorption systems-An overlooked resistance ? Industrial & Engineering Chemistry Research, 59, 22007–22016. https://doi.org/10.1021/acs.iecr.0c05032
  • Jeon C, 2017. Adsorption of silver ions from industrial wastewater using waste coffee grounds. Korean Journal of Chemical Engineering, 34(2), 384–391. https://doi.org/10.1007/s11814-016-0253-9
  • Jiang X, Wang H, Wang Q, Hu E, Duan Y, 2020. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. Journal of Cleaner Production, 247(xxxx), 119162. https://doi.org/10.1016/j.jclepro.2019.119162
  • Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H, Chen Y, 2016. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. International Journal of Biological Macromolecules, 83, 133–141. https://doi.org/10.1016/j.ijbiomac.2015.11.061
  • Kanmaz N, Saloglu D, Hizal J, 2019. Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: Synthesis, characterization, swelling kinetic and diffusion coefficient. Chemical Engineering Communications, 206(9), 1168–1180. https://doi.org/10.1080/00986445.2018.1550396
  • Karadağ E, Kundakcı S, 2015. Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers and Polymers, 16(10), 2165–2176. https://doi.org/10.1007/s12221-015-5522-4
  • Kaynar ÜH, Çınar S, Kaynar SÇ, Ayvacıklı M, Aydemir T, 2018. Modelling and optimization of uranium(VI)ions adsorption onto nano-ZnO/chitosan bio-composite beads with responsesurface methodology (RSM). Journal of Polymers and the Environment, 26(6), 2300–2310. https://doi.org/10.1007/s10924-017-1125-z
  • Khajavi P, Keshtkar AR, Moosavian MA, 2021. The optimization of U(VI) removal by a novel amidoximated modified calcium alginate gel bead with entrapped functionalized SiO2 nanoparticles. Progress in Nuclear Energy, 140(August), 103887. https://doi.org/10.1016/j.pnucene.2021.103887
  • Krestou A, Xenidis A, Panias D, 2003. Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering, 16(12), 1363–1370. https://doi.org/10.1016/j.mineng.2003.08.012
  • Kumar M, Tripathi BP, Shahi VK, 2009. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. Journal of Hazardous Materials, 172(2–3), 1041–1048. https://doi.org/10.1016/j.jhazmat.2009.07.108
  • Kurecic M, Sfiligoj M, 2012. Polymer nanocomposite hydrogels for water purification. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/51055
  • Li D, Yang Y, Zhang P, Liu J, Li T, Yang J, 2021. U(VI) adsorption in water by sodium alginate modified Bacillus megaterium. Royal Society Open Science, 8(2). https://doi.org/10.1098/rsos.202098
  • Li D, Zhang P, Yang Y, Huang Y, Li T, Yang J, 2021. U(VI) adsorption by sodium alginate/graphene oxide composite beads in water. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1131–1141. https://doi.org/10.1007/s10967-021-07598-y
  • Li P, Zhun B, Wang X, Liao P, Wang G, Wang L, Zhang W, 2017. Highly efficient interception and precipitation of uranium(VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environmental Science and Technology, 51(24), 14368–14378. https://doi.org/10.1021/acs.est.7b05288
  • Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ, 2017. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environmental Science and Technology, 51(10), 5666–5674. https://doi.org/10.1021/acs.est.6b05313
  • Lu W, Dai Z, Li L, Liu J, Wang S, Yang H, Zhang P, 2020. Preparation of composite hydrogel (PCG) and its adsorption performance for uranium(VI). Journal of Molecular Liquids, 303. https://doi.org/10.1016/j.molliq.2020.112604
  • Ma F, Gui Y, Liu P, Xue Y, Song W, 2020. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chemical Engineering Journal, 390(February), 124597. https://doi.org/10.1016/j.cej.2020.124597
  • Marrakchi F, Khanday WA, Asif M, Hameed BH, 2016. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231–1239. https://doi.org/10.1016/j.ijbiomac.2016.09.069
  • Meinrath A, Schneider P, Meinrath G, 2003. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. Journal of Environmental Radioactivity, 64(2–3), 175–193. https://doi.org/10.1016/S0265-931X(02)00048-6
  • Mitsakou C, Eleftheriadis K, Housiadas C, Lazaridis M, 2003. Modeling of the dispersion of depleted uranium aerosol. Health Physics, 84(4), 538–544. https://doi.org/10.1097/00004032-200304000-00014
  • Moghaddam RH, Dadfarnia S, Shabani HMA, Tavakol M, 2019. Synthesis of composite hydrogel of glutamic acid , gum tragacanth , and anionic polyacrylamide by electron beam irradiation for uranium ( VI ) removal from aqueous samples : Equilibrium , kinetics , and thermodynamic studies. Carbohydrate Polymers, 206, 352–361. https://doi.org/10.1016/j.carbpol.2018.10.030
  • Monier M, Abdel-Latif DA, 2017. Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. International Journal of Biological Macromolecules, 105, 777–787. https://doi.org/10.1016/j.ijbiomac.2017.07.098
  • Monier M, Abdel-Latif DA,Youssef I, 2018. Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. Journal of Colloid and Interface Science, 513, 266–278. https://doi.org/10.1016/j.jcis.2017.11.004
  • Ngah WSW, Fatinathan S, 2008. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143(1–3), 62–72. https://doi.org/10.1016/j.cej.2007.12.006
  • Park SI, Kwak IS, Won SW, Yun YS, 2013. Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. Journal of Hazardous Materials, 248–249(1), 211–218. https://doi.org/10.1016/j.jhazmat.2013.01.013
  • Paudyal H, Pangeni B, Inoue K, Kawakita H, Ohto K, Ghimire, KN, Alam S, 2013. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water. Bioresource Technology, 148, 221–227. https://doi.org/10.1016/j.biortech.2013.08.116
  • Saha S, Basu H, Rout S, Pimple MV, Singhal RK, 2020. Nano-hydroxyapatite coated activated carbon impregnated alginate: A new hybrid sorbent for uranium removal from potable water. Journal of Environmental Chemical Engineering, 8(4), 103999. https://doi.org/10.1016/j.jece.2020.103999
  • Şenol H, Açıkel Ü, 2018. Investigation of adsorption of Cu (II) heavy metal with bentonite. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 231–242. https://doi.org/10.17798/bitlisfen.420210
  • Şenol ZM, 2021. A chitosan-based composite for adsorption of uranyl ions ; mechanism , isothems , kinetics and thermodynamics. International Journal of Biological Macromolecules, 183, 1640–1648. https://doi.org/10.1016/j.ijbiomac.2021.05.130
  • Shalla AH, Yaseen Z, Bhat MA, Rangreez TA, Maswal M, 2019. Recent review for removal of metal ions by hydrogels. Separation Science and Technology (Philadelphia), 54(1), 89–100. https://doi.org/10.1080/01496395.2018.1503307
  • Shao Z, Huang X, Yang F, Zhao WF, Zhou X, Zhao C, 2018. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydrate Polymers, 187(November 2017), 85–93. https://doi.org/10.1016/j.carbpol.2018.01.092
  • Singh VK, Tiwari PN, (997. Removal and recovery of chromium (VI) from industrial waste water. Journal of Chemical Technology and Biotechnology, 69(3), 376–382. https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<376::AID-JCTB714>3.0.CO;2-F
  • Sivakami MS, Gomathi T, Venkatesan J, Jeong HS, Kim SK, Sudha PN, 2013. Preparation and characterization of nano chitosan for treatment wastewaters. International Journal of Biological Macromolecules, 57, 204–212. https://doi.org/10.1016/j.ijbiomac.2013.03.005
  • Sureshkumar MK, Das D, Mallia MB, Gupta PC, 2010. Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. Journal of Hazardous Materials, 184(1–3), 65–72. https://doi.org/10.1016/j.jhazmat.2010.07.119
  • Talebi M, Abbasizadeh S, Keshtkar AR, 2017. Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Safety and Environmental Protection, 109, 340–356. https://doi.org/10.1016/j.psep.2017.04.013
  • Tohdee K, Kaewsichan L, Asadullah K, 2018. Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2), 2821–2828. https://doi.org/10.1016/j.jece.2018.04.030
  • Tolba AA, 2020. Evaluation of uranium adsorption using magnetic-polyamine chitosan from sulfate leach liquor ofsela ore material, South Eastern Desert, Egypt. Egyptian Journal of Chemistry, 63(12), 5219–5238. https://doi.org/10.21608/EJCHEM.2020.27972.2586
  • Tong K, 2017. Preparation and biosorption evaluation of bacillus subtilis/alginate-chitosan microcapsule. Nanotechnology, Science and Applications, 10, 35–43. https://doi.org/10.2147/NSA.S104808
  • Tonghuan L, Guojian D, Xiaojiang D, Wangsuo W, Ying Y, 2013. Adsorptive features of polyacrylic acid hydrogel for UO2 2+. Journal of Radioanalytical and Nuclear Chemistry, 297, 119–125. https://doi.org/10.1007/s10967-012-2316-7
  • Tonghuan L, Zhen X, Guojian D, Yinping T, Qiangqiang Z, Wangsuo W, 2016. Adsorptive features of poly (acrylic acid-co-hydroxyapatite) composite for UO2 2+. Journal of Radioanalytical and Nuclear Chemistry, 307(2), 1221–1230. https://doi.org/10.1007/s10967-015-4288-x
  • Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014
  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM, 2015. Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414–433. https://doi.org/10.1016/j.msec.2015.07.053
  • Ulusoy Hİ, Şimşek S, 2013. Removal of uranyl ions in aquatic mediums by using a new material : Gallocyanine grafted hydrogel. Journal of Hazardous Materials, 255, 397–405. https://doi.org/10.1016/j.jhazmat.2013.04.004
  • Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R, 2017. A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering C, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
  • Vijayaraghavan K, Yun YS, 2008. Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002
  • Wang B, Sun YC, Sun RC, 2019. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. Journal of Leather Science and Engineering, 1(1), 1–25. https://doi.org/10.1186/s42825-019-0003-y
  • Wang G, Liu J, Wang X, Xie Z, Deng N, 2009. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials, 168(2–3), 1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157
  • Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Aida T, 2010. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 463(7279), 339–343. https://doi.org/10.1038/nature08693
  • Wang X, Li R, Liu J, Chen R, Zhang H, Liu Q, Wang J, 2017. Melamine modified graphene hydrogels for the removal of uranium(VI) from aqueous solution. New Journal of Chemistry, 41(19), 10899–10907. https://doi.org/10.1039/c7nj01927k
  • Wang X, Liu Q, Liu J, Chen R, Zhang H, Li R, Wang J, 2017. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Applied Surface Science, 426, 1063–1074. https://doi.org/10.1016/j.apsusc.2017.07.203
  • Wang Y, Ma X, Li Y, Li X, Yang L, Ji L, He Y, 2012. Preparation of a novel chelating resin containing amidoxime-guanidine group and its recovery properties for silver ions in aqueous solution. Chemical Engineering Journal, 209, 394–400. https://doi.org/10.1016/j.cej.2012.07.143
  • Wang Z, Wang Y, Yao C, 2021. Highly efficient removal of uranium(VI) from aqueous solution using the Chitosan ‑ Hexachlorocyclotriphosphazene composite. Journal of Radioanalytical and Nuclear Chemistry, 330(1), 113–125. https://doi.org/10.1007/s10967-021-07944-0
  • Wang Z, Liu Z, Ye T, Wang Y, Zhou L, 2020. Removal of uranyl ions from aqueous media by tannic acid ‑ chitosan hydrothermal carbon : equilibria , kinetics and thermodynamics. Journal of Radioanalytical and Nuclear Chemistry, 326(3), 1843–1852. https://doi.org/10.1007/s10967-020-07452-7
  • Wei C, Yang M, Guo Y, Xu W, Gu J, Ou M, Xu X, 2018. Highly efficient removal of uranium(VI) from aqueous solutions by poly(acrylic acid-co-acrylamide) hydrogels. Journal of Radioanalytical and Nuclear Chemistry, 315(2), 211–221. https://doi.org/10.1007/s10967-017-5653-8
  • Worch E, 2012. Adsorption kinetics. In Adsorption Technology in Water Treatment (pp. 123–168). De Gruyter.
  • Wu L, Lin X, Zhou X, Luo X, 2016. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Applied Surface Science, 384, 466–479. https://doi.org/10.1016/j.apsusc.2016.05.056
  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C, 2008. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 99(1), 126–133. https://doi.org/10.1016/j.jenvrad.2007.07.003
  • Yi X, He J, Guo Y, Han Z, Yang M, Jin J, Xu X, 2018. Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicology and Environmental Safety, 147(September 2017), 699–707. https://doi.org/10.1016/j.ecoenv.2017.09.036
  • Yi X, Xu Z, Liu Y, Guo X, Ou M, Xu X, 2017. Highly efficient removal of uranium(VI) from wastewater by polyacrylic acid hydrogels. RSC Advances, 7(11), 6278–6287. https://doi.org/10.1039/c6ra26846c
  • Yu J, Wang J, Jiang Y, 2017. Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engineering and Technology, 49(3), 534–540. https://doi.org/10.1016/j.net.2016.09.004
  • Zahakifar F, Keshtkar AR, Talebi M, 2021. Synthesis of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/ ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Progress in Nuclear Energy, 134(January), 103642. https://doi.org/10.1016/j.pnucene.2021.103642
  • Zarrougui R, Mdimagh R, Raouafi N, 2018. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. Journal of Hazardous Materials, 342(Vi), 464–476. https://doi.org/10.1016/j.jhazmat.2017.08.057
  • Zeldovich YB, 2015. The oxidation of nitrogen in combustion and explosions. Selected Works of Yakov Borisovich Zeldovich, Volume I, 216, 364–403. https://doi.org/10.1515/9781400862979.364
  • Zhou L, Li Z, Zeng K, Chen Q, Wang Y, Liu Z, Adesina AA, 2017. Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 314(1), 467–476. https://doi.org/10.1007/s10967-017-5407-7
  • Zhuang S, Cheng R, Kang M, Wang J, 2018. Kinetic and equilibrium of U(Ⅵ) adsorption onto magnetic amidoxime-functionalized chitosan beads. Journal of Cleaner Production, 188, 655–661. https://doi.org/10.1016/j.jclepro.2018.04.047

Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme

Yıl 2022, , 1436 - 1455, 01.09.2022
https://doi.org/10.21597/jist.1079143

Öz

Uranyumun nükleer enerji endüstrisinde yakıt olarak kullanımı madenciliğinin de artış göstermesine sebep olmuştur. Bu sebeple sulara karışan uranyum oranında da artış görülmektedir. Öte yandan, nükleer enerjinin en önemli sorunlardan birisi radyoaktif kirlilik oluşturan kullanılmış yakıt atıklarıdır. Radyoaktif uranyum ve bileşikleri insan vücudunda ciddi hasarlara, böbrek yetmezliğine ve ölümlere neden olmaktadır. Canlı sağlığına tehdit oluşturmaması açısından, uranyumun sulardan adsorpsiyon ile giderimi birçok araştırma grubu tarafından aktif çalışılan konular arasında yer almaktadır. Çeşitli sorbentler, farklı potansiyelleri ile adsorpsiyon proseslerinde kendilerine yer bulurken, hidrojel bazlı adsorbanlar şişme özellikleri, arttırılabilir fonksiyonel yapıları ve biyobozunur formları sayesinde öne çıkmaktadır. Hidrojel malzemeler üzerine adsorpsiyon, yapısındaki monomerlerin iyonlaşabilen fonksiyonel gruplarından kaynaklanmaktadır. Bu derleme çalışmada, radyoaktif bir kirletici olan uranyumun adsorpsiyon prosesi psedo birinci derece, psedo ikinci derece, Elovich ve partikül içi difüzyon kinetik modelleri ve yaygın kullanılan Langmuir ve Freundlich izoterm modelleri açısından incelenmiş, kitosan ve aljinat bazlı biyokompozit sorbanlarla giderimine yönelik güncel çalışmalar sunulmuştur.

Kaynakça

  • Abou-Lilah RA, Rizk HE, Elshorbagy MA, Gamal AM, Ali AM, Badawy NA, 2020. Efficiency of bentonite in removing cesium, strontium, cobalt and uranium ions from aqueous solution: encapsulation with alginate for column application. International Journal of Environmental Analytical Chemistry, 00(00), 1–24. https://doi.org/10.1080/03067319.2020.1761348
  • Ahmad M, Ren J, Zhang Y, Kou H, Naik M, Zhang Q, Zhang B, 2022. Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chemical Engineering Journal, 427, 130934. https://doi.org/10.1016/j.cej.2021.130934
  • Akhtar K, Khalid AM, Akhtar MW, Ghauri MA, 2009. Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum. Bioresource Technology, 100(20), 4551–4558. https://doi.org/10.1016/j.biortech.2009.03.073
  • Akter M, Bhattacharjee M, Dhar AK, Rahman FBA, Haque S, Ur Rashid TU, Kabir SMF, 2021. Cellulose-based hydrogels for wastewater treatment: A concise review. Gels, 7(1), 1–28. https://doi.org/10.3390/gels7010030
  • Aljeboree AM, Alshirifi AN, Alkaim AF, 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Alvarez-Lorenzo C, Concheiro A, 2002. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 80(1–3), 247–257. https://doi.org/10.1016/S0168-3659(02)00032-9
  • Angela B, 2019. EPA ’ s flawed IRIS program is far from gold standard.
  • Anirudhan TS, Lekshmi GS, Shainy F, 2019. Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater. Journal of Colloid and Interface Science, 534, 248–261. https://doi.org/10.1016/j.jcis.2018.09.009
  • Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li S, 2015. Three novel triazine-based materials with different O/S/N set of donor atoms: One-step preparation and comparison of their capability in selective separation of uranium. Journal of Hazardous Materials, 300, 368–377. https://doi.org/10.1016/j.jhazmat.2015.07.020
  • Bai J, Fan F, Wu X, Tian W, Zhao L, Yin X, Guo J, 201). Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. Journal of Environmental Radioactivity, 126, 226–231. https://doi.org/10.1016/j.jenvrad.2013.08.010
  • Baron RI, Culica ME, Biliuta G, Bercea M, Gherman S, Zavastin D, Coseri S, 2019. Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) forwound dressing applications. Materials, 12(9). https://doi.org/10.3390/ma12091569
  • Basu H Pimple MV, Saha S, Patel A, Dansena C, Singhal RK, 2020. TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New Journal of Chemistry, 44(10), 3950–3960. https://doi.org/10.1039/c9nj06006e
  • Basu H, Singhal RK, Pimple MV, Saha S, 2018. Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. Journal of Environmental Chemical Engineering, 6(2), 1625–1633. https://doi.org/10.1016/j.jece.2018.01.065
  • Basu H, Singhal RK, Saha S, Pimple MV, 2017. Chitosan impregnated Ca-alginate: a new hybrid material for removal of uranium from potable water. Journal of Radioanalytical and Nuclear Chemistry, 314(3), 1905–1914. https://doi.org/10.1007/s10967-017-5514-5
  • Baybas D, Ulusoy U, 2011. Polyacrylamide – clinoptilolite / Y-zeolite composites : Characterization and adsorptive features for terbium. Journal of Hazardous Materials, 187, 241–249. https://doi.org/10.1016/j.jhazmat.2011.01.014
  • Bertagnolli C, Uhart A, Dupin JC, da Silva MGC, Guibal, E., Desbrieres J, 2014. Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresource Technology, 164, 264–269. https://doi.org/10.1016/j.biortech.2014.04.103
  • Birinci E, Gülfen M, Aydin AO, 2009. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy, 95(1–2), 15–21. https://doi.org/10.1016/j.hydromet.2008.04.002
  • Brugge D, De Lemos JL, Oldmixon B, 2005. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Reviews on Environmental Health, 20(3), 177–193. https://doi.org/10.1515/REVEH.2005.20.3.177
  • Burkart W, Danesi PR, Hendry JH, 2005. Properties, use and health effects of depleted uranium. International Congress Series, 1276, 133–136. https://doi.org/10.1016/j.ics.2004.09.047
  • Chen Q, Zhu L, Zhao C, Zheng J, 2012. Hydrogels for removal of heavy metals from aqueous solution. Journal of Environmental & Analytical Toxicology, 02(07). https://doi.org/10.4172/2161-0525.s2-001
  • Cheng Y, He P, Dong F, Nie X, Ding C, Wang S, Zhou S, 2019. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chemical Engineering Journal, 367(January), 198–207. https://doi.org/10.1016/j.cej.2019.02.149
  • Christou C, Philippou K, Krasia-Christoforou T, Pashalidis I, 2019. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohydrate Polymers, 219(February), 298–305. https://doi.org/10.1016/j.carbpol.2019.05.041
  • Dai Y, Zhou L, Tang X, Xi J, Ouyang J, Liu Z, Adesina AA, 2020. Macroporous ion-imprinted chitosan foams for the selective biosorption of U ( VI ) from aqueous solution. International Journal of Biological Macromolecules, 164, 4155–4164. https://doi.org/10.1016/j.ijbiomac.2020.08.238
  • De Pablo L, Chávez ML, Abatal M, 2011. Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chemical Engineering Journal, 171(3), 1276–1286. https://doi.org/10.1016/j.cej.2011.05.055
  • Ding LP, Bhatia SK, Liu F, 2002. Kinetics of adsorption on activated carbon: Application of heterogeneous vacancy solution theory. Chemical Engineering Science, 57(18), 3909–3928. https://doi.org/10.1016/S0009-2509(02)00306-8
  • Dittmar M, 2012. Nuclear energy: Status and future limitations. Energy, 37(1), 35–40. https://doi.org/10.1016/j.energy.2011.05.040
  • Douglas KT, Howlin B, Silver J, 1984. Solution Chemistry and Massbauer Study of Iron( II) and Iron( III) Complexes from Gallocyanine. Inorganica Chimica Acta, 92, 135–140.
  • Eren E, 2009. Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. Journal of Hazardous Materials, 166(1), 88–93. https://doi.org/10.1016/j.jhazmat.2008.11.011
  • Favre-Réguillon A, Lebuzit G, Murat D, Foos J, Mansour C, Draye M, 2008. Selective removal of dissolved uranium in drinking water by nanofiltration. Water Research, 42(4–5), 1160–1166. https://doi.org/10.1016/j.watres.2007.08.034
  • Gao X, Guo C, Hao J, Zhao Z, Long H, Li M, 2020. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046
  • Gao X, Li M, Zhao Y, Zhang Y, 2019. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chemical Engineering Journal, 378(April), 122096. https://doi.org/10.1016/j.cej.2019.122096
  • Gao X, Liu J, Li M, Guo C, Long H, Zhang Y, Xin L, 2020. Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chemical Engineering Journal, 385(October 2019), 123897. https://doi.org/10.1016/j.cej.2019.123897
  • Ghimire KN, Inoue K, Ohto K, Hayashida T, 2007. Adsorptive separation of metallic pollutants onto waste seaweeds, Porphyra yezoensis and Ulva japonica. Separation Science and Technology, 42(9), 2003–2018. https://doi.org/10.1080/15363830701313461
  • Gok C, Aytas S, 2009. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 168(1), 369–375. https://doi.org/10.1016/j.jhazmat.2009.02.063
  • Gu B, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Jardine PM, 2005. Bioreduction of uranium in a contaminated soil column. Environmental Science and Technology, 39(13), 4841–4847. https://doi.org/10.1021/es050011y
  • Han C, Yue Y, Xu X, Cai D, Liu Z, Chen S,Wang D, 2020. Dual crosslinked polyamidoxime/alginate sponge for robust and efficient uranium adsorption from aqueous solution. New Journal of Chemistry, 44(45), 19445–19449. https://doi.org/10.1039/d0nj04209a
  • Ho YS, McKay G, 1999a. Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1021/acs.oprd.7b00090
  • Ho YS, McKay G, 1999b. The sorption of lead(II) ions on peat. Water Research, 33(2), 578–584. https://doi.org/10.1016/S0043-1354(98)00207-3
  • Hore-Lacy I, 2016. Uranium for nuclear power: An introduction. In Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100307-7.00001-6
  • Hu S, Lin X, Zhang Y, Huang R, Qu Y, Luo X, Zhou J, 2017. Preparation and application of alginate-Ca/attapulgite clay core/shell particle for the removal of uranium from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 314(1), 307–319. https://doi.org/10.1007/s10967-017-5427-3
  • Huang G, Peng W, Yang S, 2018. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 337–344. https://doi.org/10.1007/s10967-018-5850-0
  • Huang G, Li W, Liu Q, Liu J, Zhang H, Li R, Wang J, 2018. Efficient removal of uranium(VI) from simulated seawater with hyperbranched polyethylenimine (HPEI)-functionalized polyacrylonitrile fibers. New Journal of Chemistry, 42(1), 168–176. https://doi.org/10.1039/c7nj03243a
  • İnan S, Mumcu T, Bozkurt SS, 2020. Box – Behnken design for removal of uranium(VI) from aqueous solution using poly(ethylene glycol) based dicationic ionic liquid impregnated chitosan. Turkish Journal of Chemistry, 44, 756–774. https://doi.org/10.3906/kim-1911-73
  • Inglezakis VJ, Balsamo M, Montagnaro F, 2020. Liquid-solid mass transfer in adsorption systems-An overlooked resistance ? Industrial & Engineering Chemistry Research, 59, 22007–22016. https://doi.org/10.1021/acs.iecr.0c05032
  • Jeon C, 2017. Adsorption of silver ions from industrial wastewater using waste coffee grounds. Korean Journal of Chemical Engineering, 34(2), 384–391. https://doi.org/10.1007/s11814-016-0253-9
  • Jiang X, Wang H, Wang Q, Hu E, Duan Y, 2020. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. Journal of Cleaner Production, 247(xxxx), 119162. https://doi.org/10.1016/j.jclepro.2019.119162
  • Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H, Chen Y, 2016. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. International Journal of Biological Macromolecules, 83, 133–141. https://doi.org/10.1016/j.ijbiomac.2015.11.061
  • Kanmaz N, Saloglu D, Hizal J, 2019. Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: Synthesis, characterization, swelling kinetic and diffusion coefficient. Chemical Engineering Communications, 206(9), 1168–1180. https://doi.org/10.1080/00986445.2018.1550396
  • Karadağ E, Kundakcı S, 2015. Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers and Polymers, 16(10), 2165–2176. https://doi.org/10.1007/s12221-015-5522-4
  • Kaynar ÜH, Çınar S, Kaynar SÇ, Ayvacıklı M, Aydemir T, 2018. Modelling and optimization of uranium(VI)ions adsorption onto nano-ZnO/chitosan bio-composite beads with responsesurface methodology (RSM). Journal of Polymers and the Environment, 26(6), 2300–2310. https://doi.org/10.1007/s10924-017-1125-z
  • Khajavi P, Keshtkar AR, Moosavian MA, 2021. The optimization of U(VI) removal by a novel amidoximated modified calcium alginate gel bead with entrapped functionalized SiO2 nanoparticles. Progress in Nuclear Energy, 140(August), 103887. https://doi.org/10.1016/j.pnucene.2021.103887
  • Krestou A, Xenidis A, Panias D, 2003. Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering, 16(12), 1363–1370. https://doi.org/10.1016/j.mineng.2003.08.012
  • Kumar M, Tripathi BP, Shahi VK, 2009. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. Journal of Hazardous Materials, 172(2–3), 1041–1048. https://doi.org/10.1016/j.jhazmat.2009.07.108
  • Kurecic M, Sfiligoj M, 2012. Polymer nanocomposite hydrogels for water purification. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/51055
  • Li D, Yang Y, Zhang P, Liu J, Li T, Yang J, 2021. U(VI) adsorption in water by sodium alginate modified Bacillus megaterium. Royal Society Open Science, 8(2). https://doi.org/10.1098/rsos.202098
  • Li D, Zhang P, Yang Y, Huang Y, Li T, Yang J, 2021. U(VI) adsorption by sodium alginate/graphene oxide composite beads in water. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1131–1141. https://doi.org/10.1007/s10967-021-07598-y
  • Li P, Zhun B, Wang X, Liao P, Wang G, Wang L, Zhang W, 2017. Highly efficient interception and precipitation of uranium(VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environmental Science and Technology, 51(24), 14368–14378. https://doi.org/10.1021/acs.est.7b05288
  • Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ, 2017. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environmental Science and Technology, 51(10), 5666–5674. https://doi.org/10.1021/acs.est.6b05313
  • Lu W, Dai Z, Li L, Liu J, Wang S, Yang H, Zhang P, 2020. Preparation of composite hydrogel (PCG) and its adsorption performance for uranium(VI). Journal of Molecular Liquids, 303. https://doi.org/10.1016/j.molliq.2020.112604
  • Ma F, Gui Y, Liu P, Xue Y, Song W, 2020. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chemical Engineering Journal, 390(February), 124597. https://doi.org/10.1016/j.cej.2020.124597
  • Marrakchi F, Khanday WA, Asif M, Hameed BH, 2016. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231–1239. https://doi.org/10.1016/j.ijbiomac.2016.09.069
  • Meinrath A, Schneider P, Meinrath G, 2003. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. Journal of Environmental Radioactivity, 64(2–3), 175–193. https://doi.org/10.1016/S0265-931X(02)00048-6
  • Mitsakou C, Eleftheriadis K, Housiadas C, Lazaridis M, 2003. Modeling of the dispersion of depleted uranium aerosol. Health Physics, 84(4), 538–544. https://doi.org/10.1097/00004032-200304000-00014
  • Moghaddam RH, Dadfarnia S, Shabani HMA, Tavakol M, 2019. Synthesis of composite hydrogel of glutamic acid , gum tragacanth , and anionic polyacrylamide by electron beam irradiation for uranium ( VI ) removal from aqueous samples : Equilibrium , kinetics , and thermodynamic studies. Carbohydrate Polymers, 206, 352–361. https://doi.org/10.1016/j.carbpol.2018.10.030
  • Monier M, Abdel-Latif DA, 2017. Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. International Journal of Biological Macromolecules, 105, 777–787. https://doi.org/10.1016/j.ijbiomac.2017.07.098
  • Monier M, Abdel-Latif DA,Youssef I, 2018. Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. Journal of Colloid and Interface Science, 513, 266–278. https://doi.org/10.1016/j.jcis.2017.11.004
  • Ngah WSW, Fatinathan S, 2008. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143(1–3), 62–72. https://doi.org/10.1016/j.cej.2007.12.006
  • Park SI, Kwak IS, Won SW, Yun YS, 2013. Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. Journal of Hazardous Materials, 248–249(1), 211–218. https://doi.org/10.1016/j.jhazmat.2013.01.013
  • Paudyal H, Pangeni B, Inoue K, Kawakita H, Ohto K, Ghimire, KN, Alam S, 2013. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water. Bioresource Technology, 148, 221–227. https://doi.org/10.1016/j.biortech.2013.08.116
  • Saha S, Basu H, Rout S, Pimple MV, Singhal RK, 2020. Nano-hydroxyapatite coated activated carbon impregnated alginate: A new hybrid sorbent for uranium removal from potable water. Journal of Environmental Chemical Engineering, 8(4), 103999. https://doi.org/10.1016/j.jece.2020.103999
  • Şenol H, Açıkel Ü, 2018. Investigation of adsorption of Cu (II) heavy metal with bentonite. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 231–242. https://doi.org/10.17798/bitlisfen.420210
  • Şenol ZM, 2021. A chitosan-based composite for adsorption of uranyl ions ; mechanism , isothems , kinetics and thermodynamics. International Journal of Biological Macromolecules, 183, 1640–1648. https://doi.org/10.1016/j.ijbiomac.2021.05.130
  • Shalla AH, Yaseen Z, Bhat MA, Rangreez TA, Maswal M, 2019. Recent review for removal of metal ions by hydrogels. Separation Science and Technology (Philadelphia), 54(1), 89–100. https://doi.org/10.1080/01496395.2018.1503307
  • Shao Z, Huang X, Yang F, Zhao WF, Zhou X, Zhao C, 2018. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydrate Polymers, 187(November 2017), 85–93. https://doi.org/10.1016/j.carbpol.2018.01.092
  • Singh VK, Tiwari PN, (997. Removal and recovery of chromium (VI) from industrial waste water. Journal of Chemical Technology and Biotechnology, 69(3), 376–382. https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<376::AID-JCTB714>3.0.CO;2-F
  • Sivakami MS, Gomathi T, Venkatesan J, Jeong HS, Kim SK, Sudha PN, 2013. Preparation and characterization of nano chitosan for treatment wastewaters. International Journal of Biological Macromolecules, 57, 204–212. https://doi.org/10.1016/j.ijbiomac.2013.03.005
  • Sureshkumar MK, Das D, Mallia MB, Gupta PC, 2010. Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. Journal of Hazardous Materials, 184(1–3), 65–72. https://doi.org/10.1016/j.jhazmat.2010.07.119
  • Talebi M, Abbasizadeh S, Keshtkar AR, 2017. Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Safety and Environmental Protection, 109, 340–356. https://doi.org/10.1016/j.psep.2017.04.013
  • Tohdee K, Kaewsichan L, Asadullah K, 2018. Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2), 2821–2828. https://doi.org/10.1016/j.jece.2018.04.030
  • Tolba AA, 2020. Evaluation of uranium adsorption using magnetic-polyamine chitosan from sulfate leach liquor ofsela ore material, South Eastern Desert, Egypt. Egyptian Journal of Chemistry, 63(12), 5219–5238. https://doi.org/10.21608/EJCHEM.2020.27972.2586
  • Tong K, 2017. Preparation and biosorption evaluation of bacillus subtilis/alginate-chitosan microcapsule. Nanotechnology, Science and Applications, 10, 35–43. https://doi.org/10.2147/NSA.S104808
  • Tonghuan L, Guojian D, Xiaojiang D, Wangsuo W, Ying Y, 2013. Adsorptive features of polyacrylic acid hydrogel for UO2 2+. Journal of Radioanalytical and Nuclear Chemistry, 297, 119–125. https://doi.org/10.1007/s10967-012-2316-7
  • Tonghuan L, Zhen X, Guojian D, Yinping T, Qiangqiang Z, Wangsuo W, 2016. Adsorptive features of poly (acrylic acid-co-hydroxyapatite) composite for UO2 2+. Journal of Radioanalytical and Nuclear Chemistry, 307(2), 1221–1230. https://doi.org/10.1007/s10967-015-4288-x
  • Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014
  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM, 2015. Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414–433. https://doi.org/10.1016/j.msec.2015.07.053
  • Ulusoy Hİ, Şimşek S, 2013. Removal of uranyl ions in aquatic mediums by using a new material : Gallocyanine grafted hydrogel. Journal of Hazardous Materials, 255, 397–405. https://doi.org/10.1016/j.jhazmat.2013.04.004
  • Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R, 2017. A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering C, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
  • Vijayaraghavan K, Yun YS, 2008. Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002
  • Wang B, Sun YC, Sun RC, 2019. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. Journal of Leather Science and Engineering, 1(1), 1–25. https://doi.org/10.1186/s42825-019-0003-y
  • Wang G, Liu J, Wang X, Xie Z, Deng N, 2009. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials, 168(2–3), 1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157
  • Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Aida T, 2010. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 463(7279), 339–343. https://doi.org/10.1038/nature08693
  • Wang X, Li R, Liu J, Chen R, Zhang H, Liu Q, Wang J, 2017. Melamine modified graphene hydrogels for the removal of uranium(VI) from aqueous solution. New Journal of Chemistry, 41(19), 10899–10907. https://doi.org/10.1039/c7nj01927k
  • Wang X, Liu Q, Liu J, Chen R, Zhang H, Li R, Wang J, 2017. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Applied Surface Science, 426, 1063–1074. https://doi.org/10.1016/j.apsusc.2017.07.203
  • Wang Y, Ma X, Li Y, Li X, Yang L, Ji L, He Y, 2012. Preparation of a novel chelating resin containing amidoxime-guanidine group and its recovery properties for silver ions in aqueous solution. Chemical Engineering Journal, 209, 394–400. https://doi.org/10.1016/j.cej.2012.07.143
  • Wang Z, Wang Y, Yao C, 2021. Highly efficient removal of uranium(VI) from aqueous solution using the Chitosan ‑ Hexachlorocyclotriphosphazene composite. Journal of Radioanalytical and Nuclear Chemistry, 330(1), 113–125. https://doi.org/10.1007/s10967-021-07944-0
  • Wang Z, Liu Z, Ye T, Wang Y, Zhou L, 2020. Removal of uranyl ions from aqueous media by tannic acid ‑ chitosan hydrothermal carbon : equilibria , kinetics and thermodynamics. Journal of Radioanalytical and Nuclear Chemistry, 326(3), 1843–1852. https://doi.org/10.1007/s10967-020-07452-7
  • Wei C, Yang M, Guo Y, Xu W, Gu J, Ou M, Xu X, 2018. Highly efficient removal of uranium(VI) from aqueous solutions by poly(acrylic acid-co-acrylamide) hydrogels. Journal of Radioanalytical and Nuclear Chemistry, 315(2), 211–221. https://doi.org/10.1007/s10967-017-5653-8
  • Worch E, 2012. Adsorption kinetics. In Adsorption Technology in Water Treatment (pp. 123–168). De Gruyter.
  • Wu L, Lin X, Zhou X, Luo X, 2016. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Applied Surface Science, 384, 466–479. https://doi.org/10.1016/j.apsusc.2016.05.056
  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C, 2008. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 99(1), 126–133. https://doi.org/10.1016/j.jenvrad.2007.07.003
  • Yi X, He J, Guo Y, Han Z, Yang M, Jin J, Xu X, 2018. Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicology and Environmental Safety, 147(September 2017), 699–707. https://doi.org/10.1016/j.ecoenv.2017.09.036
  • Yi X, Xu Z, Liu Y, Guo X, Ou M, Xu X, 2017. Highly efficient removal of uranium(VI) from wastewater by polyacrylic acid hydrogels. RSC Advances, 7(11), 6278–6287. https://doi.org/10.1039/c6ra26846c
  • Yu J, Wang J, Jiang Y, 2017. Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engineering and Technology, 49(3), 534–540. https://doi.org/10.1016/j.net.2016.09.004
  • Zahakifar F, Keshtkar AR, Talebi M, 2021. Synthesis of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/ ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Progress in Nuclear Energy, 134(January), 103642. https://doi.org/10.1016/j.pnucene.2021.103642
  • Zarrougui R, Mdimagh R, Raouafi N, 2018. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. Journal of Hazardous Materials, 342(Vi), 464–476. https://doi.org/10.1016/j.jhazmat.2017.08.057
  • Zeldovich YB, 2015. The oxidation of nitrogen in combustion and explosions. Selected Works of Yakov Borisovich Zeldovich, Volume I, 216, 364–403. https://doi.org/10.1515/9781400862979.364
  • Zhou L, Li Z, Zeng K, Chen Q, Wang Y, Liu Z, Adesina AA, 2017. Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 314(1), 467–476. https://doi.org/10.1007/s10967-017-5407-7
  • Zhuang S, Cheng R, Kang M, Wang J, 2018. Kinetic and equilibrium of U(Ⅵ) adsorption onto magnetic amidoxime-functionalized chitosan beads. Journal of Cleaner Production, 188, 655–661. https://doi.org/10.1016/j.jclepro.2018.04.047
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Nergiz Kanmaz 0000-0002-5598-4911

Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 25 Şubat 2022
Kabul Tarihi 8 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kanmaz, N. (2022). Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme. Journal of the Institute of Science and Technology, 12(3), 1436-1455. https://doi.org/10.21597/jist.1079143
AMA Kanmaz N. Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2022;12(3):1436-1455. doi:10.21597/jist.1079143
Chicago Kanmaz, Nergiz. “Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme”. Journal of the Institute of Science and Technology 12, sy. 3 (Eylül 2022): 1436-55. https://doi.org/10.21597/jist.1079143.
EndNote Kanmaz N (01 Eylül 2022) Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme. Journal of the Institute of Science and Technology 12 3 1436–1455.
IEEE N. Kanmaz, “Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 3, ss. 1436–1455, 2022, doi: 10.21597/jist.1079143.
ISNAD Kanmaz, Nergiz. “Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme”. Journal of the Institute of Science and Technology 12/3 (Eylül 2022), 1436-1455. https://doi.org/10.21597/jist.1079143.
JAMA Kanmaz N. Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1436–1455.
MLA Kanmaz, Nergiz. “Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme”. Journal of the Institute of Science and Technology, c. 12, sy. 3, 2022, ss. 1436-55, doi:10.21597/jist.1079143.
Vancouver Kanmaz N. Hidrojel Bazlı Biyokompozit Adsorbanların Sulu Çözeltilerden Uranyum (VI) Adsorpsiyon Kapasiteleri Üzerine Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1436-55.