Araştırma Makalesi
BibTex RIS Kaynak Göster

Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi

Yıl 2022, , 1657 - 1664, 01.09.2022
https://doi.org/10.21597/jist.1093610

Öz

Yenilenebilir enerji tükenme tehlikesi ile karşı karşıya olan fosil kaynakların yerine
kullanılabilecek güçlü bir adaydır. Bu bağlamda yenilenebilir enerji ve temiz enerji kaynağı olarak
hidrojen dikkat çekmektedir. Bu çalışmada hidrojen deposu olan metal hidritlerden sodyum bor hidrür
(NaBH4) ve potasyum bor hidrürün (KBH4) hidrolizi sonucu hidrojen üretimi incelendi. Hidroliz
reaksiyonlarında kullanılacak olan monometalik ve bimetalik katalizörler sentezlendi. Sentezlenen bu
katalizörlerin yüzey karakterizasyonu X-ışını kırınımı spektroskopisi (XRD) ve yüzey alanı analizi
(BET) analizleri kullanılarak yapıldı. Yapılan hidroliz deneyleri sonucunda NaBH4 ortamında %10
Pt80Au20/CNT katalizörü KBH4 ortamında %10 Pt60Au40/CNT katalizörü monometalik %10 Pt/CNT
katalizörüne göre daha iyi katalitik aktivite göstermiştir

Kaynakça

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Kivrak, H. Ruthenium Modified Defatted Spent Coffee Catalysts For Supercapacitor And Hydrolysis Application. Energy Storage, 3(4), e243.
  • ATELGE, R. (2021) Kısmi Yük Koşullarında Dizel-Biyogaz Kullanılarak Çift Yakıtlı Dizel Motorun Enerji ve Ekserji Analizi. Avrupa Bilim ve Teknoloji Dergisi(27), 334-346.
  • ATELGE, R. (2021). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64. Avci Hansu, T., Caglar, A., Demir Kivrak, H., & Sahin, O.(2021) Structure of ruthenium nanocatalysts of bismuth, investigation of its effect on hydrolysis performance and kinetic studies. Energy Storage, e267.
  • Avci Hansu, T., Sahin, O., Çağlar, A., & Demir Kivrak, H. (2021). Untangling the cobalt promotion role for ruthenium in sodium borohydride dehydrogenation with multiwalled carbon nanotube‐supported binary ruthenium cobalt catalyst. International Journal of Energy Research, 45(4), 6054-6066.
  • Balbay, A., & Saka, C. (2018). Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. International Journal of Hydrogen Energy, 43(46), 21299-21306.
  • Bannenberg, L., Heere, M., Benzidi, H., Montero, J., Dematteis, E., Suwarno, S., . . . Wegner, W. (2020). Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy.
  • Cousins, K., & Zhang, R. (2019). Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers, 11(4), 690.
  • El-Nagar, G. A., Mohammad, A. M., El-Deab, M. S., & El-Anadouli, B. E. (2017). Propitious dendritic Cu2O–Pt nanostructured anodes for direct formic acid fuel cells. ACS applied materials & interfaces, 9(23), 19766-19772.
  • Han, Y., Ouyang, Y., Xie, Z., Chen, J., Chang, F., & Yu, G. (2016). Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. Journal of Materials Science & Technology, 32(7), 639-645.
  • Hansu, F. (2015). The effect of dielectric barrier discharge cold plasmas on the electrochemical activity of Co–Cr–B based catalysts. Journal of the Energy Institute, 88(3), 266-274.
  • Hansu, T. A., Sahin, O., Caglar, A., & Kivrak, H. (2020). A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. Reaction Kinetics, Mechanisms and Catalysis, 131(2), 661-676.
  • Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534.
  • Jena, P. (2011). Materials for hydrogen storage: past, present, and future. The Journal of Physical Chemistry Letters, 2(3), 206-211.
  • Kaya, M. (2019). NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(20), 2549-2560.
  • Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International journal of hydrogen energy, 45(23), 12743-12754.
  • Liao, M., Li, W., Xi, X., Luo, C., Gui, S., Jiang, C., . . . Chen, B. H. (2017). Highly active Aucore@ Ptcluster catalyst for formic acid electrooxidation. Journal of Electroanalytical Chemistry, 791, 124-130.
  • Liu, Y., Ding, Y., Zhang, Y., & Lei, Y. (2012). Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors and Actuators B: Chemical, 171, 954-961. Pareek, A., Dom, R., Gupta, J., Chandran, J., Adepu, V., & Borse, P. H. (2020). Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 3, 319-327.
  • Polat, B. (2021). The impact of renewable and nonrenewable energy consumption on economic growth: a dynamic panel data approach. Asia-Pacific Journal of Accounting & Economics, 28(5), 592-603.
  • Rahman, M. M., & Velayutham, E. (2020). Renewable and non-renewable energy consumption-economic growth nexus: new evidence from South Asia. Renewable Energy, 147, 399-408.

Hydrogen Production from Hydrolysis of Sodium Borohydride and Potassium Borohydride Using PtAu/CNT Nanocomposite as Catalyst

Yıl 2022, , 1657 - 1664, 01.09.2022
https://doi.org/10.21597/jist.1093610

Öz

Renewable energy is a strong candidate that can be used instead of fossil resources that
are in danger of extinction. In this context, hydrogen draws attention as a renewable energy and clean
energy source. In this study, hydrogen production as a result of hydrolysis of sodium borohydride
(NaBH4) and potassium borohydride (KBH4) from metal hydrides, which are hydrogen storage, was
investigated. Monometallic and bimetallic catalysts to be used in hydrolysis reactions were
synthesized. Surface characterization of these synthesized catalysts was performed using X-ray
diffraction spectroscopy (XRD) and surface area analysis (BET) analyses. As a result of hydrolysis
experiments, 10% Pt80Au20/CNT catalyst in NaBH4 environment showed better catalytic activity than
10% Pt60Au40/CNT catalyst in KBH4 environment compared to monometallic 10% Pt/CNT catalyst.

Kaynakça

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Kivrak, H. Ruthenium Modified Defatted Spent Coffee Catalysts For Supercapacitor And Hydrolysis Application. Energy Storage, 3(4), e243.
  • ATELGE, R. (2021) Kısmi Yük Koşullarında Dizel-Biyogaz Kullanılarak Çift Yakıtlı Dizel Motorun Enerji ve Ekserji Analizi. Avrupa Bilim ve Teknoloji Dergisi(27), 334-346.
  • ATELGE, R. (2021). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64. Avci Hansu, T., Caglar, A., Demir Kivrak, H., & Sahin, O.(2021) Structure of ruthenium nanocatalysts of bismuth, investigation of its effect on hydrolysis performance and kinetic studies. Energy Storage, e267.
  • Avci Hansu, T., Sahin, O., Çağlar, A., & Demir Kivrak, H. (2021). Untangling the cobalt promotion role for ruthenium in sodium borohydride dehydrogenation with multiwalled carbon nanotube‐supported binary ruthenium cobalt catalyst. International Journal of Energy Research, 45(4), 6054-6066.
  • Balbay, A., & Saka, C. (2018). Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. International Journal of Hydrogen Energy, 43(46), 21299-21306.
  • Bannenberg, L., Heere, M., Benzidi, H., Montero, J., Dematteis, E., Suwarno, S., . . . Wegner, W. (2020). Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy.
  • Cousins, K., & Zhang, R. (2019). Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers, 11(4), 690.
  • El-Nagar, G. A., Mohammad, A. M., El-Deab, M. S., & El-Anadouli, B. E. (2017). Propitious dendritic Cu2O–Pt nanostructured anodes for direct formic acid fuel cells. ACS applied materials & interfaces, 9(23), 19766-19772.
  • Han, Y., Ouyang, Y., Xie, Z., Chen, J., Chang, F., & Yu, G. (2016). Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. Journal of Materials Science & Technology, 32(7), 639-645.
  • Hansu, F. (2015). The effect of dielectric barrier discharge cold plasmas on the electrochemical activity of Co–Cr–B based catalysts. Journal of the Energy Institute, 88(3), 266-274.
  • Hansu, T. A., Sahin, O., Caglar, A., & Kivrak, H. (2020). A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. Reaction Kinetics, Mechanisms and Catalysis, 131(2), 661-676.
  • Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534.
  • Jena, P. (2011). Materials for hydrogen storage: past, present, and future. The Journal of Physical Chemistry Letters, 2(3), 206-211.
  • Kaya, M. (2019). NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(20), 2549-2560.
  • Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International journal of hydrogen energy, 45(23), 12743-12754.
  • Liao, M., Li, W., Xi, X., Luo, C., Gui, S., Jiang, C., . . . Chen, B. H. (2017). Highly active Aucore@ Ptcluster catalyst for formic acid electrooxidation. Journal of Electroanalytical Chemistry, 791, 124-130.
  • Liu, Y., Ding, Y., Zhang, Y., & Lei, Y. (2012). Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors and Actuators B: Chemical, 171, 954-961. Pareek, A., Dom, R., Gupta, J., Chandran, J., Adepu, V., & Borse, P. H. (2020). Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 3, 319-327.
  • Polat, B. (2021). The impact of renewable and nonrenewable energy consumption on economic growth: a dynamic panel data approach. Asia-Pacific Journal of Accounting & Economics, 28(5), 592-603.
  • Rahman, M. M., & Velayutham, E. (2020). Renewable and non-renewable energy consumption-economic growth nexus: new evidence from South Asia. Renewable Energy, 147, 399-408.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Tulin Avcı Hansu 0000-0001-5441-4696

Saliha Özarslan 0000-0001-5696-9644

Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 25 Mart 2022
Kabul Tarihi 13 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Avcı Hansu, T., & Özarslan, S. (2022). Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi. Journal of the Institute of Science and Technology, 12(3), 1657-1664. https://doi.org/10.21597/jist.1093610
AMA Avcı Hansu T, Özarslan S. Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2022;12(3):1657-1664. doi:10.21597/jist.1093610
Chicago Avcı Hansu, Tulin, ve Saliha Özarslan. “Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür Ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi”. Journal of the Institute of Science and Technology 12, sy. 3 (Eylül 2022): 1657-64. https://doi.org/10.21597/jist.1093610.
EndNote Avcı Hansu T, Özarslan S (01 Eylül 2022) Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi. Journal of the Institute of Science and Technology 12 3 1657–1664.
IEEE T. Avcı Hansu ve S. Özarslan, “Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 3, ss. 1657–1664, 2022, doi: 10.21597/jist.1093610.
ISNAD Avcı Hansu, Tulin - Özarslan, Saliha. “Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür Ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi”. Journal of the Institute of Science and Technology 12/3 (Eylül 2022), 1657-1664. https://doi.org/10.21597/jist.1093610.
JAMA Avcı Hansu T, Özarslan S. Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1657–1664.
MLA Avcı Hansu, Tulin ve Saliha Özarslan. “Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür Ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi”. Journal of the Institute of Science and Technology, c. 12, sy. 3, 2022, ss. 1657-64, doi:10.21597/jist.1093610.
Vancouver Avcı Hansu T, Özarslan S. Katalizör Olarak PtAu/CNT Nanokompozit Kullanılarak Sodyum Borhidrür ve Potasyum Borhidrürün Hidrolizinden Hidrojen Üretimi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1657-64.