Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 3007 - 3020, 01.12.2023
https://doi.org/10.21597/jist.1121420

Öz

Kaynakça

  • Abdullahi AC, Siwar C, Shaharudin MII, Anizan I, 2018. Carbon sequestration in soils: the opportunities and challenges. Carbon Capture, Utilization and Sequestration, 1.
  • Akbaş B, Akdeniz N, Aksay A et al. 2011. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Angst G, Mueller KE, Eissenstat DM, Trumbore S, Freeman KH, Hobbie SE et al., 2019. Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Global Change Biology 25(4): 1529-1546.
  • Atalay İ, 2006. Toprak oluşumu, sınıflandırılması ve coğrafyası. Meta Basım Matbaacılık, Çevre ve Orman Bakanlığı, Izmir.
  • Bangroo SA, Najar GR, Rasool A, 2017. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena 158: 63-68.
  • Binkley D, 1986. Forest nutrition management. John Wiley & Sons.
  • Blake GR, Hartge KH, 1986. Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Blanco JA, Imbert JB, Castillo FJ, 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For. Ecol. Manag. 237(1-3),: 342-352.
  • Cao J, Wang X, Tian Y, Wen Z, Zha T, 2012. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecol Res 27(5): 883-892.
  • Çepel N, Dündar M, Özdemir T, Neyişçi T, 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa verilen besin maddeleri miktarları. Ormancılık Araştırma Enstitüsü Yayınları.
  • Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS, 2013. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300: 68-76.
  • Clinton PW, Allen RB, Davis MR, 2002. Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest. Can J For Res 32(2): 344-352.
  • Çömez A, Tolunay D, Güner ŞT, 2019. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur J For Res 138(1): 1-14.
  • Das SK, 2019. Soil carbon sequestration strategies under organic production system: a policy decision. Agrica 8(1):1–6
  • Davis MR, Allen RB, Clinton PW, 2003. Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. For. Ecol. Manag. 177(1-3): 313-321.
  • DMİ 2021. Devlet Meteoroloji İşleri Genel Müdürlüğü, Kastamonu Meteoroloji İl Müdürlüğü, Taşköprü Meteoroloji İstasyonu Verileri, 2010-2021, Kastamonu.
  • Doğan Y, 2022. The effect of stand development ages and tree species on soil organic carbon and total nitrogen stocks: The case of Taşköprü, Kastamonu. Kastamonu University, Graduate School of Natural and Applied Sciences, Department of Forest Engineering, Master Thesis (Printed).
  • Dong J, Zhou K, Jiang P, Wu J, Fu W, 2021. Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C: N ratio in subtropical forests of southeastern China. Journal of Environmental Management 289: 112483.
  • Du H, Zeng F, Peng W, Wang K, Zhang H, Liu L, Song T, 2015. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 6: 1763-1778.
  • FAO & UNESCO, 1978. Soil Map of the World 1:5.000.000, 10 vols. Paris: UNESCO.
  • FAO (Food and Agriculture Organization of the United Nations), 2017. Soil organic carbon unlocking the potential of mitigating and adapting to a changing climate. Global symposium on soil organic carbon (GSOC17) 21- 23 March 2017 FAO HQ, Rome, Italy.
  • Feeney C., Cosby J, Robinson D, Thomas A, Emmett B, 2021. A comparison of soil organic carbon concentration maps of Great Britain. In EGU General Assembly Conference Abstracts (pp. EGU21-4700).
  • Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A et al., 2020. Global carbon budget 2020. Earth System Science Data 12(4): 3269-3340.
  • Gülçür F, 1974. Toprağın fiziksel ve kimyasal analiz metodları. İ.Ü. Orman Fakültesi Yayın No: 201, İstanbul.
  • Güner D, Özkan K, 2019. Determining the nutrient stocks in black pine plantation areas in Turkey. Turkish Journal of Forest Research, 6(2): 192-207.
  • Güner Ş, Makineci E, 2017. Türkmen Dağı (Eskişehir, Kütahya) sarıçam ormanlarında toprak ve ölü örtüde biriken yıllık organik karbon miktarının belirlenmesi. Journal of the Faculty of Forestry Istanbul University 67 (2): 109-115.
  • Harmon ME, Ferrell WK, Franklin JF, 1990. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247(4943): 699-702.
  • Işık E, Göl C, 2021. Yarı kurak bölgelerde doğal ve plantasyon karaçam ormanlarının bazı toprak özellikleri ile organik karbon ve toplam azot depolama kapasitelerinin değerlendirilmesi. Turkish Journal of Forestry 22(3): 202-210.
  • Jackson ML, 1962. Soil chemical analysis. (Constable and Company, Ltd: London).
  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F et al., 2007. How strongly can forest management influence soil carbon sequestration?. Geoderma 137(3-4): 253-268.
  • Kastabil, 2021. Ağaç Türlerine Göre Orman Alanı Dağılımı (2021). Kastamonu Valiliği Veri tabanı. https://www.kastabil.gov.tr/veritablolari/kastamonu/tarim-ve-orman/agac-turlerine-gore-orman-alani-dagilim
  • Köhler L, Hölscher D, Leuschner C, 2008. High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecol 199(2):163-173.
  • Lee J, Hopmans JW, Rolston DE, Baer SG, Six J, 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134(3-4): 251-256.
  • Lee J, Tolunay D, Makineci E, Çömez A, Son YM, Kim R, Son Y, 2016. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Annals of forest science 73(2): 523-531.
  • Leuschner C, Wulf M, Bäuchler P, Hertel D, 2013. Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene: The role of tree species and forest history. For. Ecol. Manag. 310: 405-415.
  • Li S, Su J, Liu W, Lang X et al., 2015a. Changes in biomass carbon and soil organic carbon stocks following the conversion from a secondary coniferous forest to a pine plantation. PLOS one, 10(9): e0135946.
  • Li Y, Xia Y, Lei Y, Deng Y et al., 2015b. Estimating changes in soil organic carbon storage due to land use changes using a modified calculation method. iForest 8(1): 45.
  • Liu Y, Li S, Sun X, Yu X, 2016. Variations of forest soil organic carbon and its influencing factors in east China. Annals of forest science 73(2): 501-511.
  • Lukić S, Pantić D, Simić SB, Borota D, Tubić B, Djukić M, Djunisijević-Bojović D, 2015. Effects of black locust and black pine on extremely degraded sites 60 years after afforestation-a case study of the Grdelica Gorge (southeastern Serbia). iForest 9(2): 235.
  • Makineci E, Ozdemir E, Caliskan S, et al., 2015. Ecosystem carbon pools of coppice-originated oak forests at different development stages. Eur J For Res 134(2): 319-333.
  • Mao R, Zeng DH, Hu YL et al., 2010. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332(1): 277-287.
  • Miao J, Zhou CY, Li SJ, Yan JH, 2014. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages. The J Appl Ecol 25(3): 625-631.
  • Nath PC, Nath AJ, Reang D, Lal R, Das AK, 2021. Tree diversity, soil organic carbon lability and ecosystem carbon storage under a fallow age chronosequence in North East India. Environmental and Sustainability Indicators 10:100122.
  • Nave LE, DeLyser K, Domke GM, Holub SM, Janowiak MK, Kittler B et al., 2022. Disturbance and management effects on forest soil organic carbon stocks in the Pacific Northwest. Ecological Applications 32(6): e2611.
  • OGM, 2020. Türkiye orman varlığı. Orman Genel Müdürlüğü Ofset Yayınevi, s.56, Ankara, Türkiye. Ozlu E, Arriaga FJ, Bilen S, Gozukara G, Babur E, 2022. Carbon footprint management by agricultural practices. Biology, 11(10): 1453.
  • Özbay S, Tolunay D, 2021. Karışık baltalık ormanların sahil çamına dönüştürülmesinin toprak ve ölü örtüdeki organik karbon ve besin maddesi stoklarına etkisi. Ormancılık Araştırma Dergisi 8(1):12-26.
  • Özyuvacı N, 1975. Topraklarda erozyon eğiliminin tahmini açısından yapılan bazı değerlendirmeler. TÜBİTAK V. Bilim Kongresi, Tarım ve Ormancılık Araştırma Grubu Tebliğleri Ormancılık Seksiyonu, 29 Eylül-2 Ekim, 123-134. İzmir.
  • Peichl M, Arain MA, 2006. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140(1-4): 51-63.
  • Poeplau C, Don A, Schneider F, 2021. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. Global Change Biology 27(19):4921-4934.
  • Prietzel J, Bachmann S, 2012. Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. For. Ecol. Manag. 269: 134-148.
  • Santonja M, Pereira S, Gauquelin T, Quer E, Simioni G, Limousin JM et al., 2022. Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france. Forests 13(9):1485.
  • Sariyildiz T, Savaci G, Kravkaz IS, 2015. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest 9(1): 165.
  • Savacı G, Sarıyıldız T, 2020. Determination of changes in soil organic carbon and total nitrogen stocks under different stand age of kazdağı fir (Abies nordmanniana subsp. equi-trojani (Steven) Spach). Bartın Orman Fakültesi Dergisi 22(2): 532-543.
  • Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E, 2021. The effects of windthrow damage on soil properties in Scots pine, black pine and Kazdağı fir stands in the northwest Turkey. Kastamonu University Journal of Forestry Faculty, 21(3): 229-243.
  • Schrumpf M, Schulze ED, Kaiser K, Schumacher J, 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?. Biogeosciences 8(5): 1193-1212.
  • Sevgi O, Makineci E, Karaoz O, 2011. The forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji 20(81): 8-14.
  • Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N et al., 2018. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Scientific reports 8(1): 1-9.
  • Sun X, Wang G, Ma Q, Liao J, Wang D, Guan Q, Jones DL, 2021. Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest. Forest Ecosystems 8(1): 1-11.
  • Topa D, Cara IG, Jităreanu G, 2021. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena, 199: 105102.
  • Wang G, Singh M, Wang J, Xiao L, Guan D, 2021. Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. Catena 202: 105270.
  • Wasak K, Drewnik M, 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland–a case study from the Tatra Mountains (Poland). Solid Earth 6(4): 1103-1115.
  • Yan T, Lü XT, Zhu JJ et al., 2018. Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations. Plant Soil 422(1): 385-396.
  • Yang Y, Luo Y, Finzi AC, 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190(4): 977-989.
  • Yuan ZY, Chen HYH, 2010. Changes in nitrogen resorption of trembling aspen (Populus tremuloides) with stand development. Plant Soil 327(1): 121-129.
  • Zimmermann R, Schulze ED, Wirth C et al., 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob. Change Biol. 6(1): 25-37.

The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye

Yıl 2023, , 3007 - 3020, 01.12.2023
https://doi.org/10.21597/jist.1121420

Öz

The influence of stand development stages on soil organic carbon (SOC) and total nitrogen (TN) stocks was examined in black pine (Pinus nigra Arnold.), Scots pine (Pinus sylvestris L.), and Kazdağı fir (Abies nordmanniana subsp. equi-trojanı (Aschers. & Sint. ex Boiss) Coode et Cullen), differing in the mean tree diameters in which reproduction stages (RS)=<8 cm, sapling or pole stages (SPS)= 8-19.9 cm, large pole stages (LPS)= 20-35.9 cm, and medium wood stages (MWS)=36-51.9 cm in three tree species located in northwestern Turkey. A total of 216 soil samples were collected and analyzed for pH, organic matter, bulk density, maximum water holding capacity, carbon, and nitrogen concentrations, and the SOC and TN stocks were calculated. SOC and TN stocks varied significantly among the four stand development stage classes. The SOC stock at 0-30 cm increased significantly due to an increase in the diameter of black stands (BPLPS and BPMWS). SOC stocks in all stand development stages peaked in the large pole (44.94 Mg/ha) and declined as the sapling or pole (37.71 Mg/ha) was replaced by medium wood stands (30.17 Mg/ha), and a low point (27.94 Mg/ha) was found in the reproduction stages of stand development for Scots pine. The TN stock at a soil depth of 0-30 cm ranged from 1.66 to 6.46 Mg/ha. The highest TN stock was observed in the SPSPS (6.46 Mg/ha) and FirRS (5.48 Mg/ha), and the lowest was observed in the BPLPS (1.66 Mg/ha) stands. The results illustrate that soil was the main storage of C and N in all different stand development stages of tree species.

Teşekkür

We are thankful to Kastamonu Regional Forest Directorate for permitting us to collect the soil data in the forest sites.

Kaynakça

  • Abdullahi AC, Siwar C, Shaharudin MII, Anizan I, 2018. Carbon sequestration in soils: the opportunities and challenges. Carbon Capture, Utilization and Sequestration, 1.
  • Akbaş B, Akdeniz N, Aksay A et al. 2011. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Angst G, Mueller KE, Eissenstat DM, Trumbore S, Freeman KH, Hobbie SE et al., 2019. Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Global Change Biology 25(4): 1529-1546.
  • Atalay İ, 2006. Toprak oluşumu, sınıflandırılması ve coğrafyası. Meta Basım Matbaacılık, Çevre ve Orman Bakanlığı, Izmir.
  • Bangroo SA, Najar GR, Rasool A, 2017. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena 158: 63-68.
  • Binkley D, 1986. Forest nutrition management. John Wiley & Sons.
  • Blake GR, Hartge KH, 1986. Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • Blanco JA, Imbert JB, Castillo FJ, 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For. Ecol. Manag. 237(1-3),: 342-352.
  • Cao J, Wang X, Tian Y, Wen Z, Zha T, 2012. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecol Res 27(5): 883-892.
  • Çepel N, Dündar M, Özdemir T, Neyişçi T, 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa verilen besin maddeleri miktarları. Ormancılık Araştırma Enstitüsü Yayınları.
  • Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS, 2013. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300: 68-76.
  • Clinton PW, Allen RB, Davis MR, 2002. Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest. Can J For Res 32(2): 344-352.
  • Çömez A, Tolunay D, Güner ŞT, 2019. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur J For Res 138(1): 1-14.
  • Das SK, 2019. Soil carbon sequestration strategies under organic production system: a policy decision. Agrica 8(1):1–6
  • Davis MR, Allen RB, Clinton PW, 2003. Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. For. Ecol. Manag. 177(1-3): 313-321.
  • DMİ 2021. Devlet Meteoroloji İşleri Genel Müdürlüğü, Kastamonu Meteoroloji İl Müdürlüğü, Taşköprü Meteoroloji İstasyonu Verileri, 2010-2021, Kastamonu.
  • Doğan Y, 2022. The effect of stand development ages and tree species on soil organic carbon and total nitrogen stocks: The case of Taşköprü, Kastamonu. Kastamonu University, Graduate School of Natural and Applied Sciences, Department of Forest Engineering, Master Thesis (Printed).
  • Dong J, Zhou K, Jiang P, Wu J, Fu W, 2021. Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C: N ratio in subtropical forests of southeastern China. Journal of Environmental Management 289: 112483.
  • Du H, Zeng F, Peng W, Wang K, Zhang H, Liu L, Song T, 2015. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 6: 1763-1778.
  • FAO & UNESCO, 1978. Soil Map of the World 1:5.000.000, 10 vols. Paris: UNESCO.
  • FAO (Food and Agriculture Organization of the United Nations), 2017. Soil organic carbon unlocking the potential of mitigating and adapting to a changing climate. Global symposium on soil organic carbon (GSOC17) 21- 23 March 2017 FAO HQ, Rome, Italy.
  • Feeney C., Cosby J, Robinson D, Thomas A, Emmett B, 2021. A comparison of soil organic carbon concentration maps of Great Britain. In EGU General Assembly Conference Abstracts (pp. EGU21-4700).
  • Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A et al., 2020. Global carbon budget 2020. Earth System Science Data 12(4): 3269-3340.
  • Gülçür F, 1974. Toprağın fiziksel ve kimyasal analiz metodları. İ.Ü. Orman Fakültesi Yayın No: 201, İstanbul.
  • Güner D, Özkan K, 2019. Determining the nutrient stocks in black pine plantation areas in Turkey. Turkish Journal of Forest Research, 6(2): 192-207.
  • Güner Ş, Makineci E, 2017. Türkmen Dağı (Eskişehir, Kütahya) sarıçam ormanlarında toprak ve ölü örtüde biriken yıllık organik karbon miktarının belirlenmesi. Journal of the Faculty of Forestry Istanbul University 67 (2): 109-115.
  • Harmon ME, Ferrell WK, Franklin JF, 1990. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247(4943): 699-702.
  • Işık E, Göl C, 2021. Yarı kurak bölgelerde doğal ve plantasyon karaçam ormanlarının bazı toprak özellikleri ile organik karbon ve toplam azot depolama kapasitelerinin değerlendirilmesi. Turkish Journal of Forestry 22(3): 202-210.
  • Jackson ML, 1962. Soil chemical analysis. (Constable and Company, Ltd: London).
  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F et al., 2007. How strongly can forest management influence soil carbon sequestration?. Geoderma 137(3-4): 253-268.
  • Kastabil, 2021. Ağaç Türlerine Göre Orman Alanı Dağılımı (2021). Kastamonu Valiliği Veri tabanı. https://www.kastabil.gov.tr/veritablolari/kastamonu/tarim-ve-orman/agac-turlerine-gore-orman-alani-dagilim
  • Köhler L, Hölscher D, Leuschner C, 2008. High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecol 199(2):163-173.
  • Lee J, Hopmans JW, Rolston DE, Baer SG, Six J, 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134(3-4): 251-256.
  • Lee J, Tolunay D, Makineci E, Çömez A, Son YM, Kim R, Son Y, 2016. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Annals of forest science 73(2): 523-531.
  • Leuschner C, Wulf M, Bäuchler P, Hertel D, 2013. Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene: The role of tree species and forest history. For. Ecol. Manag. 310: 405-415.
  • Li S, Su J, Liu W, Lang X et al., 2015a. Changes in biomass carbon and soil organic carbon stocks following the conversion from a secondary coniferous forest to a pine plantation. PLOS one, 10(9): e0135946.
  • Li Y, Xia Y, Lei Y, Deng Y et al., 2015b. Estimating changes in soil organic carbon storage due to land use changes using a modified calculation method. iForest 8(1): 45.
  • Liu Y, Li S, Sun X, Yu X, 2016. Variations of forest soil organic carbon and its influencing factors in east China. Annals of forest science 73(2): 501-511.
  • Lukić S, Pantić D, Simić SB, Borota D, Tubić B, Djukić M, Djunisijević-Bojović D, 2015. Effects of black locust and black pine on extremely degraded sites 60 years after afforestation-a case study of the Grdelica Gorge (southeastern Serbia). iForest 9(2): 235.
  • Makineci E, Ozdemir E, Caliskan S, et al., 2015. Ecosystem carbon pools of coppice-originated oak forests at different development stages. Eur J For Res 134(2): 319-333.
  • Mao R, Zeng DH, Hu YL et al., 2010. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332(1): 277-287.
  • Miao J, Zhou CY, Li SJ, Yan JH, 2014. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages. The J Appl Ecol 25(3): 625-631.
  • Nath PC, Nath AJ, Reang D, Lal R, Das AK, 2021. Tree diversity, soil organic carbon lability and ecosystem carbon storage under a fallow age chronosequence in North East India. Environmental and Sustainability Indicators 10:100122.
  • Nave LE, DeLyser K, Domke GM, Holub SM, Janowiak MK, Kittler B et al., 2022. Disturbance and management effects on forest soil organic carbon stocks in the Pacific Northwest. Ecological Applications 32(6): e2611.
  • OGM, 2020. Türkiye orman varlığı. Orman Genel Müdürlüğü Ofset Yayınevi, s.56, Ankara, Türkiye. Ozlu E, Arriaga FJ, Bilen S, Gozukara G, Babur E, 2022. Carbon footprint management by agricultural practices. Biology, 11(10): 1453.
  • Özbay S, Tolunay D, 2021. Karışık baltalık ormanların sahil çamına dönüştürülmesinin toprak ve ölü örtüdeki organik karbon ve besin maddesi stoklarına etkisi. Ormancılık Araştırma Dergisi 8(1):12-26.
  • Özyuvacı N, 1975. Topraklarda erozyon eğiliminin tahmini açısından yapılan bazı değerlendirmeler. TÜBİTAK V. Bilim Kongresi, Tarım ve Ormancılık Araştırma Grubu Tebliğleri Ormancılık Seksiyonu, 29 Eylül-2 Ekim, 123-134. İzmir.
  • Peichl M, Arain MA, 2006. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140(1-4): 51-63.
  • Poeplau C, Don A, Schneider F, 2021. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. Global Change Biology 27(19):4921-4934.
  • Prietzel J, Bachmann S, 2012. Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. For. Ecol. Manag. 269: 134-148.
  • Santonja M, Pereira S, Gauquelin T, Quer E, Simioni G, Limousin JM et al., 2022. Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france. Forests 13(9):1485.
  • Sariyildiz T, Savaci G, Kravkaz IS, 2015. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest 9(1): 165.
  • Savacı G, Sarıyıldız T, 2020. Determination of changes in soil organic carbon and total nitrogen stocks under different stand age of kazdağı fir (Abies nordmanniana subsp. equi-trojani (Steven) Spach). Bartın Orman Fakültesi Dergisi 22(2): 532-543.
  • Savacı G, Sarıyıldız T, Çağlar S, Kara F, Topal E, 2021. The effects of windthrow damage on soil properties in Scots pine, black pine and Kazdağı fir stands in the northwest Turkey. Kastamonu University Journal of Forestry Faculty, 21(3): 229-243.
  • Schrumpf M, Schulze ED, Kaiser K, Schumacher J, 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?. Biogeosciences 8(5): 1193-1212.
  • Sevgi O, Makineci E, Karaoz O, 2011. The forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji 20(81): 8-14.
  • Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N et al., 2018. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Scientific reports 8(1): 1-9.
  • Sun X, Wang G, Ma Q, Liao J, Wang D, Guan Q, Jones DL, 2021. Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest. Forest Ecosystems 8(1): 1-11.
  • Topa D, Cara IG, Jităreanu G, 2021. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena, 199: 105102.
  • Wang G, Singh M, Wang J, Xiao L, Guan D, 2021. Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. Catena 202: 105270.
  • Wasak K, Drewnik M, 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland–a case study from the Tatra Mountains (Poland). Solid Earth 6(4): 1103-1115.
  • Yan T, Lü XT, Zhu JJ et al., 2018. Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations. Plant Soil 422(1): 385-396.
  • Yang Y, Luo Y, Finzi AC, 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190(4): 977-989.
  • Yuan ZY, Chen HYH, 2010. Changes in nitrogen resorption of trembling aspen (Populus tremuloides) with stand development. Plant Soil 327(1): 121-129.
  • Zimmermann R, Schulze ED, Wirth C et al., 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob. Change Biol. 6(1): 25-37.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Endüstri Mühendisliği
Bölüm Orman Mühendisliği / Forestry Engineering
Yazarlar

Gamze Savacı 0000-0003-4685-2797

Yunus Doğan Bu kişi benim 0000-0001-8960-6161

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 25 Mayıs 2022
Kabul Tarihi 15 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Savacı, G., & Doğan, Y. (2023). The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye. Journal of the Institute of Science and Technology, 13(4), 3007-3020. https://doi.org/10.21597/jist.1121420
AMA Savacı G, Doğan Y. The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2023;13(4):3007-3020. doi:10.21597/jist.1121420
Chicago Savacı, Gamze, ve Yunus Doğan. “The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye”. Journal of the Institute of Science and Technology 13, sy. 4 (Aralık 2023): 3007-20. https://doi.org/10.21597/jist.1121420.
EndNote Savacı G, Doğan Y (01 Aralık 2023) The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye. Journal of the Institute of Science and Technology 13 4 3007–3020.
IEEE G. Savacı ve Y. Doğan, “The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 4, ss. 3007–3020, 2023, doi: 10.21597/jist.1121420.
ISNAD Savacı, Gamze - Doğan, Yunus. “The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye”. Journal of the Institute of Science and Technology 13/4 (Aralık 2023), 3007-3020. https://doi.org/10.21597/jist.1121420.
JAMA Savacı G, Doğan Y. The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:3007–3020.
MLA Savacı, Gamze ve Yunus Doğan. “The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye”. Journal of the Institute of Science and Technology, c. 13, sy. 4, 2023, ss. 3007-20, doi:10.21597/jist.1121420.
Vancouver Savacı G, Doğan Y. The Effects of Stand Development Stages on Soil Carbon and Nitrogen Stocks in Black Pine, Scots Pine and Fir Stands in Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):3007-20.