Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi

Yıl 2022, , 2175 - 2187, 01.12.2022
https://doi.org/10.21597/jist.1141320

Öz

Tungsten, yoğunluğu kurşuna göre yüksek, dayanıklı, sertlik ve mukavemet bakımından iyi bir metaldir. Bu çalışmada 0.060 MeV ila 2.614 MeV enerji aralığında bazı tungsten içerikli minerallerin (tungstibit, tungstenit, hubrenit, russelit, antonit) kütle azaltma katsayısı, lineer azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri, ortalama serbest yol, etkin atom numarası ve etkin elektron yoğunluğu gibi gama radyasyonu zırhlama parametreleri WinXCOM programı, GEANT4 ve FLUKA simülasyon kodları yardımıyla incelenmiş ve elde edilen sonuçlar birbirleri ile karşılaştırılmıştır. Tungstenin K tabakası soğurma kıyısı enerjisi (0.0695 MeV) çevresinde tungstenit mineralinin daha iyi bir gama zırh malzemesi olabileceği gözlemlenirken, diğer enerji bölgelerinde russelit mineralinin daha iyi bir gama zırh malzemesi olabileceği gözlemlenmiştir.

Kaynakça

  • Agostinelli S, Allison J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Zschiesche D, …& Geant4 Colllaboration, 2003. GEANT4-a simulation toolkit. Nuclear instruments and methods in physics resarch section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3): 250-303.
  • Ahmed B, Shah GB, Malik AH, Aurangzeb MR, 2019. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Applied Radiational and Isotopes, 155: 108901.
  • Aita RS, Abdel Ghany AA, Ibrahim EM, El- Feky MG, El Aassy IE, Mahmoud KA, 2022. Gamma-rays attenuation by mineralized silstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations. Radiation Physics and Chemistry, 198: 110281.
  • Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C, 2010. Gamma-ray shielding concrete including barite at different energies. Progress in Nuclear Energy, 52 (7): 620-623.
  • Akman F, Durak R, Turhan MF, Kaçal MR, 2015. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 10.
  • Akman F, Sayyed MI, Kaçal MR, Tekin HO, 2019a. Investigation of photon shielding performances of some selected alloys by experimental data,theoretical and MCNPX code in theenergyrange of 81 keV-1333 keV. Journal of Alloys and Compounds, 772: 516-524.
  • Akman F, Sayyed MI, Karataş HA, 2019b. Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782: 315-322.
  • Akman F, Ogul H, Ozkan I, Kaçal MR, Agar O, Polat H, Dilsiz K, 2022. Study on gamma radiation attenuation and non- ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54 (1): 283-292.
  • Alshahrani B, Olarinoye IO, Mutuwong C, Sriwunkum C, Yakout HA, Tekin HO, Al-Buriahi MS, 2021. Amorphous alloys with high Fe content for radiation shielding applications. Radiation Physics and Chemistry, 183: 109386.
  • Baltas H, Sirin M, Celik A, Ustabas I, El-Khayatt AM, 2019. Radiation shielding properties of mortars with minerals ans ores addivites, Cement and Concrete Composites, 97: 268-278.
  • Basyigit C, Uysal V, Kilinçarslan S, Mavi B, Günoğlu K, Akkurt I, Çağlar, SH, 2011. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes. American Institute of Physics, 1400: 232-235.
  • Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari, A, Ortega, PG, Mairani A, Sala PR, Smirnov G, Vlachoudis, V, 2014. The FLUKA code: developments and challenges for high energy and medical applications. Nuclear data sheets, 120: 211-214.
  • CheeBan C, Khalaf MA, Ramli M, Ahmed NM, Ahmad MS, Ahmed Ali AM, Dawood ET, Ameri F, 2021. Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 39: 102290.
  • Demir F, Budak G, Sahin R, Karabulut A, Oltulu M, Un A, 2011. Determination of radiation attenuation coefficients of heavyweight— and normal weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38 (6): 1274-1278.
  • Dong MG, Agar O, Tekin HO, Kilicoglu O, Kaky KM, Sayyed MI, 2019. A comparative study on gamma photon shielding features of various germanate glass Systems. Composites Part B: Engineering, 165: 636-647.
  • Gerward L, Guilbert N, Jensen KB, Levring H, 2004. WinXCom- a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71 (3): 653-654.
  • Hanfi MY, Sayyed MI, Lacomme EL, Akkurt I, Mahmoud KA, 2021. The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nuclear Engineering and Technology, 53 (6): 2000-2010.
  • Harish V, Nagaiah N, Niranjana Prabhu T, Varughese KT, 2009. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composite for gamma radiation shielding applications. Journal of Applied Polymer Science, 112 (3): 1503-1508.
  • Kaçal MR, Polat H, Oltulu M, Akman F, Ağar O, Tekin HO, 2020. Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical and simulation based study. Applied Physics A, 126: 205.
  • Kılıcoğlu O, More CV, Akman F, Dilsiz K, Oğul H, Kaçal MR, Polat H, Agar O, 2022. Micro Pb filled polymer composites: Theoretical, experimental and simulation results for γ-ray shielding performance. Radiation Physics and Chemistry, 194: 110039.
  • Körpınar B, Canbaz Öztürk B, Çam NF, Akat H, 2020. Radiation shielding properties of Poly(hydroxylethyl methacrylate)/Tungsten (VI) oxide composite. Materials Chemistry and Physics, 239: 121986.
  • Li Q, Wei Q, Zheng W, Zheng Y, Okosi N, Wang Z, Su M, 2018. Enhanced radiation Shielding with conformal light-weight nanoparticle-polymer composite. ACS Applied Materials & Interfaces, 10: 35510-35515.
  • Mahmoud KA, Lacomme E, Sayyed MI, Özpolat ÖF, Tashlykov OL, 2020. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon, 6 (3): e03560.
  • Manohara SR, Hanagodimath SM, Thind KS, Gerward L, 2008. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (18): 3906-3912.
  • Mansour A, Sayyed MI, Mahmoud KA, Şakar E, Kovaleva EG, 2020. Modified halloysite minerels for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13 (1): 94-101.
  • Mhareb MHA, Zeama M, Elsafi M, Alajerami YS, Sayyed MI, Saleh G, Hamad RM, Hamad MKH, 2021. Radiation shielding features for various tellurium-based alloys: a comparative study. Journal of Materials Science: Materials in Electronics, 32: 26798-26811.
  • More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP, 2021. Polymeric composite materials for radiation shielding: a review. Environmental Chemistry Letters, 19 (3): 2057-2090.
  • Sayyed MI, Lakshminarayana G, Kaçal MR, Akman F, 2018. Radiation protective characteristics of some selected tungstates. Radiachimica Acta, 107 (4): 349-357.
  • Sayyed MI, Akman F, Turcan V, Araz A, 2019. Evaluation of radiation absorption capacity of some soil samples. Radiochimica Acta, 107(1): 83-93.
  • Sirin M, 2020. The effect of titanium (Ti) additive on radiation shielding efficiency of A125Zn alloy. Progress in nuclear energy, 128: 103470. Tasnim A, Sahadath MH, Islam Khan MN, 2021. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties. Radiation Physic and Chemistry, 189: 109772.
  • Turhan MF, Akman F, Kaçal MR, Durak R, 2019. Calculation of Absorption Parameters for Some Selected Minerals in the Energy Range of 1 keV to 100 GeV. International Journal of Scientific Engineering Research, 10 (9): 56-61.
  • Turhan MF, Akman F, Polat H, Kaçal MR, Demirkol İ, 2020. Gamma-ray attenuation behaviors of hematite doped polymer composites. Progress in Nuclear Energy, 129: 103504.
  • Wang X, Dong S, Ashour A, Zhang W, Han B, 2020. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Material, 240: 117942.

Investigation of Gamma Shielding Properties of Some Tungsten-Containing Minerals in a Wide Energy Range

Yıl 2022, , 2175 - 2187, 01.12.2022
https://doi.org/10.21597/jist.1141320

Öz

Tungsten is a metal with high density, durable, good in terms of hardness and strength compared to lead. In this study, gamma shielding parameters such as mass attenuation coefficient, linear attenuation coefficient, half value layer, tenth value layer, mean free path, effective atomic number and effective atomic density for some tungsten-containing minerals (tungstibite, tungstenite, hubrenite, russellite, anthoinite) in the energy range of 0.060 MeV to 2.614 MeV were investigated with the help of WinXCOM program, GEANT4 and FLUKA simulation codes and the obtained results were compared with each other. It has been observed that tungstenite may be a better gamma shielding material around the K shell absorption edge energy (0.0695 MeV) of tungsten, while russellite may be a better gamma shielding material in other energy regions.

Kaynakça

  • Agostinelli S, Allison J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Zschiesche D, …& Geant4 Colllaboration, 2003. GEANT4-a simulation toolkit. Nuclear instruments and methods in physics resarch section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3): 250-303.
  • Ahmed B, Shah GB, Malik AH, Aurangzeb MR, 2019. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Applied Radiational and Isotopes, 155: 108901.
  • Aita RS, Abdel Ghany AA, Ibrahim EM, El- Feky MG, El Aassy IE, Mahmoud KA, 2022. Gamma-rays attenuation by mineralized silstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations. Radiation Physics and Chemistry, 198: 110281.
  • Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C, 2010. Gamma-ray shielding concrete including barite at different energies. Progress in Nuclear Energy, 52 (7): 620-623.
  • Akman F, Durak R, Turhan MF, Kaçal MR, 2015. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 10.
  • Akman F, Sayyed MI, Kaçal MR, Tekin HO, 2019a. Investigation of photon shielding performances of some selected alloys by experimental data,theoretical and MCNPX code in theenergyrange of 81 keV-1333 keV. Journal of Alloys and Compounds, 772: 516-524.
  • Akman F, Sayyed MI, Karataş HA, 2019b. Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782: 315-322.
  • Akman F, Ogul H, Ozkan I, Kaçal MR, Agar O, Polat H, Dilsiz K, 2022. Study on gamma radiation attenuation and non- ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54 (1): 283-292.
  • Alshahrani B, Olarinoye IO, Mutuwong C, Sriwunkum C, Yakout HA, Tekin HO, Al-Buriahi MS, 2021. Amorphous alloys with high Fe content for radiation shielding applications. Radiation Physics and Chemistry, 183: 109386.
  • Baltas H, Sirin M, Celik A, Ustabas I, El-Khayatt AM, 2019. Radiation shielding properties of mortars with minerals ans ores addivites, Cement and Concrete Composites, 97: 268-278.
  • Basyigit C, Uysal V, Kilinçarslan S, Mavi B, Günoğlu K, Akkurt I, Çağlar, SH, 2011. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes. American Institute of Physics, 1400: 232-235.
  • Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari, A, Ortega, PG, Mairani A, Sala PR, Smirnov G, Vlachoudis, V, 2014. The FLUKA code: developments and challenges for high energy and medical applications. Nuclear data sheets, 120: 211-214.
  • CheeBan C, Khalaf MA, Ramli M, Ahmed NM, Ahmad MS, Ahmed Ali AM, Dawood ET, Ameri F, 2021. Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 39: 102290.
  • Demir F, Budak G, Sahin R, Karabulut A, Oltulu M, Un A, 2011. Determination of radiation attenuation coefficients of heavyweight— and normal weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38 (6): 1274-1278.
  • Dong MG, Agar O, Tekin HO, Kilicoglu O, Kaky KM, Sayyed MI, 2019. A comparative study on gamma photon shielding features of various germanate glass Systems. Composites Part B: Engineering, 165: 636-647.
  • Gerward L, Guilbert N, Jensen KB, Levring H, 2004. WinXCom- a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71 (3): 653-654.
  • Hanfi MY, Sayyed MI, Lacomme EL, Akkurt I, Mahmoud KA, 2021. The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nuclear Engineering and Technology, 53 (6): 2000-2010.
  • Harish V, Nagaiah N, Niranjana Prabhu T, Varughese KT, 2009. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composite for gamma radiation shielding applications. Journal of Applied Polymer Science, 112 (3): 1503-1508.
  • Kaçal MR, Polat H, Oltulu M, Akman F, Ağar O, Tekin HO, 2020. Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical and simulation based study. Applied Physics A, 126: 205.
  • Kılıcoğlu O, More CV, Akman F, Dilsiz K, Oğul H, Kaçal MR, Polat H, Agar O, 2022. Micro Pb filled polymer composites: Theoretical, experimental and simulation results for γ-ray shielding performance. Radiation Physics and Chemistry, 194: 110039.
  • Körpınar B, Canbaz Öztürk B, Çam NF, Akat H, 2020. Radiation shielding properties of Poly(hydroxylethyl methacrylate)/Tungsten (VI) oxide composite. Materials Chemistry and Physics, 239: 121986.
  • Li Q, Wei Q, Zheng W, Zheng Y, Okosi N, Wang Z, Su M, 2018. Enhanced radiation Shielding with conformal light-weight nanoparticle-polymer composite. ACS Applied Materials & Interfaces, 10: 35510-35515.
  • Mahmoud KA, Lacomme E, Sayyed MI, Özpolat ÖF, Tashlykov OL, 2020. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon, 6 (3): e03560.
  • Manohara SR, Hanagodimath SM, Thind KS, Gerward L, 2008. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (18): 3906-3912.
  • Mansour A, Sayyed MI, Mahmoud KA, Şakar E, Kovaleva EG, 2020. Modified halloysite minerels for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13 (1): 94-101.
  • Mhareb MHA, Zeama M, Elsafi M, Alajerami YS, Sayyed MI, Saleh G, Hamad RM, Hamad MKH, 2021. Radiation shielding features for various tellurium-based alloys: a comparative study. Journal of Materials Science: Materials in Electronics, 32: 26798-26811.
  • More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP, 2021. Polymeric composite materials for radiation shielding: a review. Environmental Chemistry Letters, 19 (3): 2057-2090.
  • Sayyed MI, Lakshminarayana G, Kaçal MR, Akman F, 2018. Radiation protective characteristics of some selected tungstates. Radiachimica Acta, 107 (4): 349-357.
  • Sayyed MI, Akman F, Turcan V, Araz A, 2019. Evaluation of radiation absorption capacity of some soil samples. Radiochimica Acta, 107(1): 83-93.
  • Sirin M, 2020. The effect of titanium (Ti) additive on radiation shielding efficiency of A125Zn alloy. Progress in nuclear energy, 128: 103470. Tasnim A, Sahadath MH, Islam Khan MN, 2021. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties. Radiation Physic and Chemistry, 189: 109772.
  • Turhan MF, Akman F, Kaçal MR, Durak R, 2019. Calculation of Absorption Parameters for Some Selected Minerals in the Energy Range of 1 keV to 100 GeV. International Journal of Scientific Engineering Research, 10 (9): 56-61.
  • Turhan MF, Akman F, Polat H, Kaçal MR, Demirkol İ, 2020. Gamma-ray attenuation behaviors of hematite doped polymer composites. Progress in Nuclear Energy, 129: 103504.
  • Wang X, Dong S, Ashour A, Zhang W, Han B, 2020. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Material, 240: 117942.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Hatice Gürel Özdemir 0000-0002-6590-2334

İskender Demirkol 0000-0002-8065-6717

İlhami Erkoyuncu 0000-0003-1639-5062

Meryem Yılmaz 0000-0001-7513-4001

Mustafa Recep Kaçal 0000-0002-3183-5516

Ferdi Akman 0000-0002-8838-1762

Yayımlanma Tarihi 1 Aralık 2022
Gönderilme Tarihi 6 Temmuz 2022
Kabul Tarihi 7 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özdemir, H. G., Demirkol, İ., Erkoyuncu, İ., Yılmaz, M., vd. (2022). Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Journal of the Institute of Science and Technology, 12(4), 2175-2187. https://doi.org/10.21597/jist.1141320
AMA Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2022;12(4):2175-2187. doi:10.21597/jist.1141320
Chicago Özdemir, Hatice Gürel, İskender Demirkol, İlhami Erkoyuncu, Meryem Yılmaz, Mustafa Recep Kaçal, ve Ferdi Akman. “Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi”. Journal of the Institute of Science and Technology 12, sy. 4 (Aralık 2022): 2175-87. https://doi.org/10.21597/jist.1141320.
EndNote Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F (01 Aralık 2022) Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Journal of the Institute of Science and Technology 12 4 2175–2187.
IEEE H. G. Özdemir, İ. Demirkol, İ. Erkoyuncu, M. Yılmaz, M. R. Kaçal, ve F. Akman, “Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 4, ss. 2175–2187, 2022, doi: 10.21597/jist.1141320.
ISNAD Özdemir, Hatice Gürel vd. “Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi”. Journal of the Institute of Science and Technology 12/4 (Aralık 2022), 2175-2187. https://doi.org/10.21597/jist.1141320.
JAMA Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:2175–2187.
MLA Özdemir, Hatice Gürel vd. “Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi”. Journal of the Institute of Science and Technology, c. 12, sy. 4, 2022, ss. 2175-87, doi:10.21597/jist.1141320.
Vancouver Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(4):2175-87.