Research Article
BibTex RIS Cite

Investigation of Structural, Thermal and Mechanical Properties of AlMgTiB Alloy

Year 2023, , 572 - 581, 01.03.2023
https://doi.org/10.21597/jist.1159904

Abstract

In this study, Al86-xMg10Ti4Bx (x=1, 2, 3 and 4) alloys were produced by casting, and their microstructure, thermal and mechanical properties were investigated extensively. The microstructural properties of the alloys were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDX). Composition ratios were studied using an X-ray fluorescence Spectrometer (XRF). The thermal behaviors were evaluated by differential scanning calorimetry (DSC) analysis. Mechanical properties were investigated by Vickers microhardness (HV) measurement and tensile test. In the XRD analysis of the alloys, phases such as α-Al, β-Al3Mg2, Al3Ti and AlB2 were detected. SEM images showed that the microstructure of the alloys mainly consisted of rod-like and dendritic structures. It has been determined that the alloys are produced by their nominal composition and are homogeneous. In the DSC analysis results, an endothermic peak was observed at 660 °C, representing aluminum's melting temperature only. In the tensile strength and microhardness results of the alloys, the highest tensile strength was determined as 199.96 MPa for the Al85Mg10Ti4B1 alloy and 207.4 HV for the Al82Mg10Ti4B4 alloy. This study determined that the increase in the boron ratio in AlMgTiB alloys caused an increase in hardness values but a decrease in tensile strength.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi

Project Number

2017/2-42 D

Thanks

2017/2-42 D

References

  • Abdelhakim, N. A. ve Shalaby, R. M. (2021). Microstructures and Mechanical Properties of Al-Zn-Sn Bearing Alloys for High Performance Applications. World Journal of Engineering and Technology, 9(3), 637-652.
  • An, X. G., Liu, Y., Ye, J. W., Wang, L. Z., Wang, P. Y. (2016). Grain refining efficiency of SHS Al–Ti–B–C master alloy for pure aluminum and its effect on mechanical properties. Acta Metallurgica Sinica (English Letters), 29(8), 742-747.
  • Binesh, B. ve Aghaie-Khafri. M. (2016). Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy. Metals, 6(3), 42.
  • Cai, Y., Wang. C., Zhang, J. (2013). Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy. International Journal of Minerals, Metallurgy, and Materials, 20(7), 659-664.
  • Chen, B., Wang, Y., Xiao, C., Zhang, M, Ni, G., Li, D. (2018). The formation mechanism of intermetallic compounds in Al/Mg friction-stir weld joint. Materials Science and Technology, 34(6), 703-711.
  • Damavandi, E., Nourouzi, S., Rabiee, S. M., Jamaati, R., Szpunar, J. A. (2021). EBSD study of the microstructure and texture evolution in an Al–Si–Cu alloy processed by route A ECAP. Journal of Alloys and Compounds, 858, 157651.
  • Deng, J., Shen, J., Li, H., Chen, H., Xie, F. (2020). Investigation on microstructure, mechanical properties and corrosion behavior of Sc-contained Al-7075 alloys after solution-aging treatment. Materials Research Express, 7(9), 96512.
  • Easton, M. A. ve StJohn, D. H. (2000). Partitioning of titanium during solidification of aluminium alloys. Materials Science and Technology, 16(9), 993-1000.
  • Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X. R., Thompson, G. E., Pennycook, T., Hashimoto, T. (2015). Grain refining mechanism in the Al/Al–Ti–B system. Acta Materialia, 84, 292-304.
  • Gogebakan, M. ve Avar, B. (2010). Quasicrystalline phase formation during heat treatment in mechanically alloyed Al65Cu20Fe15 alloy. Materials Science and Technology, 26(8), 920-924.
  • Gögebakan, M. ve Uzun, O. (2004). Thermal stability and mechanical properties of Al-based amorphous alloys. Journal of Materials Processing Technology, 153: 829-832.
  • Hosseini, S. H., Abrinia, K., Faraji, G. (2015). Applicability of a modified backward extrusion process on commercially pure aluminum. Materials & Design, 65, 521-528.
  • Hu, Z., Wan, L., Wu, S., Wu, H., Liu, X. (2013). Microstructure and mechanical properties of high strength die-casting Al–Mg–Si–Mn alloy. Materials & Design, 46, 451-456.
  • Huang, B., Liu, Y., Zhou, Z., Cheng, W., Liu, X. (2022). Selective laser melting of 7075 aluminum alloy inoculated by Al–Ti–B: Grain refinement and superior mechanical properties. Vacuum, 200, 111030.
  • Huang, J., Feng, L., Li, C., Huang, C., Li, J., Friedrich, B. (2020). Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. Scripta Materialia, 180, 88-92.
  • Ji, C., Ma, A., Jiang, J. (2022). Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys. Journal of Alloys and Compounds, 900, 163508.
  • Jia, Y., Wang, S., Shu, D. (2020). Grain size prediction and investigation of 7055 aluminum alloy inoculated by Al–5Ti–1B master alloy. Journal of Alloys and Compounds, 821, 153504.
  • Koç, E., Incesu, A., Saud, A. N. (2022). Comparative Study on Dry and Bio-Corrosive Wear Behavior of Mg-xAl-3Zn Alloys (x= 0.5-1-2-3 wt. %). Journal of Materials Engineering and Performance, 31(1), 613-621.
  • Li, B., Pan, Q., Huang, X., Yin, Z. (2014). Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr. Materials Science and Engineering: A, 616, 219-228.
  • Li, X., Cai, Q., Zhao, B., Xiao, Y., Li, B. (2016). Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 675, 201-210.
  • Long, L., Liu, W., Ma, Y., Wu, L., Liu, C. (2018). A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy. High Temperature Materials and Processes, 37(5), 437-444.
  • Murty, B.S., Kori, S.A., Chakraborty, M. (2002). Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews, 47(1), 3-29.
  • Okamoto, H. (2000). Phase diagrams for binary alloys. ASM International Materials Park, Ohio (Vol. 44).
  • Prach, O., Trudonoshyn, O., Randelzhofer, P., Körner, С., Durst, K. (2019). Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys. Materials Science and Engineering: A, 759, 603-612.
  • Prasad, N.E., Wanhill, R.J.H. (2017). Aerospace materials and material technologies (Vol. 3). Springer. Qiu, D., Taylor, J. A., Zhang, M. X., Kelly, P. M. (2007). A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys. Acta Materialia, 55(4), 1447-1456.
  • Rangel-Ortiz, T., Alcala, F. C., Hirata, V. M. L., Frias-Flores. J, Araujo-Osorio, J. E., Dorantes-Rosales, H. J., Saucedo-Muñoz, M. L. (2005). Microstructure and tensile properties of a continuous-cast Al–Li–Hf alloy. Journal of Materials Processing Technology, 159(2), 164-168.
  • Tian, L., Guo, Y., Li, J., Xia, F., Liang, M., Duan, H., Wang, P., Wang, J. (2018). Microstructures of three in-situ reinforcements and the effect on the tensile strengths of an Al-Si-Cu-Mg-Ni alloy. Applied Sciences, 8(9), 1523.
  • Troeger, L. P. ve Starke, Jr. E. (2000). Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Materials Science and Engineering: A, 277(1–2), 102-113.
  • Wang, F., Eskin, D., Connolley, T., Mi, J. (2016). Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al–0.4 Ti alloy. Journal of Crystal Growth, 435, 24-30.
  • Wang, F., Liu, Z., Qiu, D., Taylor, J. A., Easton, M. A., Zhang, M. X. (2013). Revisiting the role of peritectics in grain refinement of Al alloys. Acta Materialia, 61(1), 360-370.
  • Xu, C., Xiao, W., Zheng, R., Hanada, S., Yamagata, H., Ma, C. (2015). The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Materials & Design, 88, 485-492.

AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi

Year 2023, , 572 - 581, 01.03.2023
https://doi.org/10.21597/jist.1159904

Abstract

Bu çalışmada, Al86-xMg10Ti4Bx (x=1, 2, 3 ve 4) alaşımları döküm yöntemi ile üretilerek mikroyapı, ısısal ve mekanik özellikleri kapsamlı bir şekilde araştırılmıştır. Alaşımların, mikroyapı özellikleri X-ışını difraksiyonu (XRD), Taramalı Elektron Mikroskobu (SEM), Enerji Dağılımlı X-ışını Spektroskopisi (EDX) ile karakterize edilmiştir. Kompozisyon oranları X-ışını floresans Spektrometresi (XRF) kullanılarak incelenmiştir. Termal davranışları diferansiyel taramalı kalorimetre (DSC) analizi ile değerlendirilmiştir. Mekanik özellikleri Vickers mikrosertlik (HV) ölçümü ve çekme testi yapılarak araştırılmıştır. Alaşımların XRD analizlerinde, α-Al, β-Al3Mg2, Al3Ti ve AlB2 gibi fazlar tespit edilmiştir. SEM görüntüleri alaşımların mikro yapısının esas olarak, çubuksu ve dentritik yapılar içerdiğini göstermiştir. Alaşımların nominal kompozisyonuna uygun olarak üretildiği ve homojen olduğu tespit edilmiştir. DSC analiz sonuçlarında, sadece alüminyumun ergime sıcaklığını temsil eden 660 °C’de endotermik pik gözlenmiştir. Alaşımların çekme mukavemeti ve mikrosertlik sonuçlarında, Al85Mg10Ti4B1 alaşımı için en yüksek çekme mukavemeti 199.96 MPa ve Al82Mg10Ti4B4 alaşımı için en yüksek sertlik değeri 207.4 HV olarak belirlenmiştir. Bu çalışmada, AlMgTiB alaşımlarındaki bor oranının artması sertlik değerlerinin artmasına fakat çekme mukavemetinin azalmasına neden olduğu tespit edilmiştir.

Project Number

2017/2-42 D

References

  • Abdelhakim, N. A. ve Shalaby, R. M. (2021). Microstructures and Mechanical Properties of Al-Zn-Sn Bearing Alloys for High Performance Applications. World Journal of Engineering and Technology, 9(3), 637-652.
  • An, X. G., Liu, Y., Ye, J. W., Wang, L. Z., Wang, P. Y. (2016). Grain refining efficiency of SHS Al–Ti–B–C master alloy for pure aluminum and its effect on mechanical properties. Acta Metallurgica Sinica (English Letters), 29(8), 742-747.
  • Binesh, B. ve Aghaie-Khafri. M. (2016). Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy. Metals, 6(3), 42.
  • Cai, Y., Wang. C., Zhang, J. (2013). Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy. International Journal of Minerals, Metallurgy, and Materials, 20(7), 659-664.
  • Chen, B., Wang, Y., Xiao, C., Zhang, M, Ni, G., Li, D. (2018). The formation mechanism of intermetallic compounds in Al/Mg friction-stir weld joint. Materials Science and Technology, 34(6), 703-711.
  • Damavandi, E., Nourouzi, S., Rabiee, S. M., Jamaati, R., Szpunar, J. A. (2021). EBSD study of the microstructure and texture evolution in an Al–Si–Cu alloy processed by route A ECAP. Journal of Alloys and Compounds, 858, 157651.
  • Deng, J., Shen, J., Li, H., Chen, H., Xie, F. (2020). Investigation on microstructure, mechanical properties and corrosion behavior of Sc-contained Al-7075 alloys after solution-aging treatment. Materials Research Express, 7(9), 96512.
  • Easton, M. A. ve StJohn, D. H. (2000). Partitioning of titanium during solidification of aluminium alloys. Materials Science and Technology, 16(9), 993-1000.
  • Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X. R., Thompson, G. E., Pennycook, T., Hashimoto, T. (2015). Grain refining mechanism in the Al/Al–Ti–B system. Acta Materialia, 84, 292-304.
  • Gogebakan, M. ve Avar, B. (2010). Quasicrystalline phase formation during heat treatment in mechanically alloyed Al65Cu20Fe15 alloy. Materials Science and Technology, 26(8), 920-924.
  • Gögebakan, M. ve Uzun, O. (2004). Thermal stability and mechanical properties of Al-based amorphous alloys. Journal of Materials Processing Technology, 153: 829-832.
  • Hosseini, S. H., Abrinia, K., Faraji, G. (2015). Applicability of a modified backward extrusion process on commercially pure aluminum. Materials & Design, 65, 521-528.
  • Hu, Z., Wan, L., Wu, S., Wu, H., Liu, X. (2013). Microstructure and mechanical properties of high strength die-casting Al–Mg–Si–Mn alloy. Materials & Design, 46, 451-456.
  • Huang, B., Liu, Y., Zhou, Z., Cheng, W., Liu, X. (2022). Selective laser melting of 7075 aluminum alloy inoculated by Al–Ti–B: Grain refinement and superior mechanical properties. Vacuum, 200, 111030.
  • Huang, J., Feng, L., Li, C., Huang, C., Li, J., Friedrich, B. (2020). Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. Scripta Materialia, 180, 88-92.
  • Ji, C., Ma, A., Jiang, J. (2022). Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys. Journal of Alloys and Compounds, 900, 163508.
  • Jia, Y., Wang, S., Shu, D. (2020). Grain size prediction and investigation of 7055 aluminum alloy inoculated by Al–5Ti–1B master alloy. Journal of Alloys and Compounds, 821, 153504.
  • Koç, E., Incesu, A., Saud, A. N. (2022). Comparative Study on Dry and Bio-Corrosive Wear Behavior of Mg-xAl-3Zn Alloys (x= 0.5-1-2-3 wt. %). Journal of Materials Engineering and Performance, 31(1), 613-621.
  • Li, B., Pan, Q., Huang, X., Yin, Z. (2014). Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr. Materials Science and Engineering: A, 616, 219-228.
  • Li, X., Cai, Q., Zhao, B., Xiao, Y., Li, B. (2016). Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 675, 201-210.
  • Long, L., Liu, W., Ma, Y., Wu, L., Liu, C. (2018). A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy. High Temperature Materials and Processes, 37(5), 437-444.
  • Murty, B.S., Kori, S.A., Chakraborty, M. (2002). Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews, 47(1), 3-29.
  • Okamoto, H. (2000). Phase diagrams for binary alloys. ASM International Materials Park, Ohio (Vol. 44).
  • Prach, O., Trudonoshyn, O., Randelzhofer, P., Körner, С., Durst, K. (2019). Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys. Materials Science and Engineering: A, 759, 603-612.
  • Prasad, N.E., Wanhill, R.J.H. (2017). Aerospace materials and material technologies (Vol. 3). Springer. Qiu, D., Taylor, J. A., Zhang, M. X., Kelly, P. M. (2007). A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys. Acta Materialia, 55(4), 1447-1456.
  • Rangel-Ortiz, T., Alcala, F. C., Hirata, V. M. L., Frias-Flores. J, Araujo-Osorio, J. E., Dorantes-Rosales, H. J., Saucedo-Muñoz, M. L. (2005). Microstructure and tensile properties of a continuous-cast Al–Li–Hf alloy. Journal of Materials Processing Technology, 159(2), 164-168.
  • Tian, L., Guo, Y., Li, J., Xia, F., Liang, M., Duan, H., Wang, P., Wang, J. (2018). Microstructures of three in-situ reinforcements and the effect on the tensile strengths of an Al-Si-Cu-Mg-Ni alloy. Applied Sciences, 8(9), 1523.
  • Troeger, L. P. ve Starke, Jr. E. (2000). Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Materials Science and Engineering: A, 277(1–2), 102-113.
  • Wang, F., Eskin, D., Connolley, T., Mi, J. (2016). Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al–0.4 Ti alloy. Journal of Crystal Growth, 435, 24-30.
  • Wang, F., Liu, Z., Qiu, D., Taylor, J. A., Easton, M. A., Zhang, M. X. (2013). Revisiting the role of peritectics in grain refinement of Al alloys. Acta Materialia, 61(1), 360-370.
  • Xu, C., Xiao, W., Zheng, R., Hanada, S., Yamagata, H., Ma, C. (2015). The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Materials & Design, 88, 485-492.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Metallurgical and Materials
Authors

Hakan Yaykaşlı 0000-0001-5729-9662

Musa Gögebakan 0000-0001-5104-2874

Project Number 2017/2-42 D
Publication Date March 1, 2023
Submission Date August 9, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023

Cite

APA Yaykaşlı, H., & Gögebakan, M. (2023). AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 13(1), 572-581. https://doi.org/10.21597/jist.1159904
AMA Yaykaşlı H, Gögebakan M. AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. March 2023;13(1):572-581. doi:10.21597/jist.1159904
Chicago Yaykaşlı, Hakan, and Musa Gögebakan. “AlMgTiB Alaşımının Yapısal, Isısal Ve Mekanik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 572-81. https://doi.org/10.21597/jist.1159904.
EndNote Yaykaşlı H, Gögebakan M (March 1, 2023) AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 13 1 572–581.
IEEE H. Yaykaşlı and M. Gögebakan, “AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 572–581, 2023, doi: 10.21597/jist.1159904.
ISNAD Yaykaşlı, Hakan - Gögebakan, Musa. “AlMgTiB Alaşımının Yapısal, Isısal Ve Mekanik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 13/1 (March 2023), 572-581. https://doi.org/10.21597/jist.1159904.
JAMA Yaykaşlı H, Gögebakan M. AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2023;13:572–581.
MLA Yaykaşlı, Hakan and Musa Gögebakan. “AlMgTiB Alaşımının Yapısal, Isısal Ve Mekanik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 572-81, doi:10.21597/jist.1159904.
Vancouver Yaykaşlı H, Gögebakan M. AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2023;13(1):572-81.