Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması
Yıl 2023,
, 1703 - 1712, 01.09.2023
Tuncay Dilsizoğlu
,
İsmail Hakki Karahan
,
Ali Tozar
Öz
Kemiğin yapısına en yakın olan kalsiyum fosfat; (Ca10(PO4)6(OH)2) oranının olduğu hidroksiapatittir (HA). Ancak polimer katkısıyla hidroksiapatitin (HA) mukavemet ve sertlik gibi mekanik özelliklerinin arttırıldığı bilinmektedir. Düşük toksiklik ve yüksek biyouyumluluk özelliklerinden dolayı kitosan (CTS) polimer olarak kullanıldı. HA/CTS kaplamaları yapılırken orta moleküler ağırlıklı (MMW) ve yüksek moleküler ağırlıklı (HMW) olmak üzere iki farklı moleküler ağırlıklı kitosan kullanıldı. Orta ve yüksek moleküler ağırlıklı kitosan katkılanarak HA/CTS biyokompozit kaplamalarının etkisi incelendi. Kaplamalar ultasonik destekli elektroforetik yöntemle üretildi. Kristalografik, morfolojik yapıları FT-IR, XRD ve SEM ile incelendi. Yüksek moleküler ağırlıklı kitosan değeri arttıkça numunenin yapısının daha homojen olduğu belirlendi.
Destekleyen Kurum
Hatay Mustafa Kemal Üniversitesi
Teşekkür
Bu çalışmayı 18.D.015 proje numarası ile desteklediği için Hatay Mustafa Kemal Üniversitesi BAP Birimine teşekkür ederiz.
Kaynakça
- Alshaaer, M., Cuypers, H., Rahier, H., Wastiels, J. (2011). Production of monetite-based Inorganic Phosphate Cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research, 41(1), 30-37.
- Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., Lobo, A.O. (2013). The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Materials Science and Engineering: C, 33(5), 2620-2625.
- Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E., Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168, 1317-1323.
- Das, S., Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Biswas, P., Pal, K., Thakur, P., Das, K., Karmakar, P. (2018). Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Colloids and Surfaces B: Biointerfaces, 171, 300–307.
- Guan, S., Wen, C., Peng, L., Ren, C., Wang, X., Hu, Z. (2009). Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 255(13-14), 6433-6438.
- Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, H.E., Kim, S.G. (2011). Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surface and Coatings Technology, 205(8-9), 3112-3118.
- Lin, D.Y. ve Wang, X.X. (2010). Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surface and Coatings Technology, 204(20),3205-3213.
- Madl, A.K., Liong, M., Kovochich, M., Finley, B.L., Paustenbach, D.J., Oberdörster, G. (2015). Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1201-1215.
- Muley, S.V., Vidvans, A.N., Chaudhari, G.P., Udainiya, S. (2016). An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomaterialia, 30, 408-419.
- Nikpour, M.R., Rabiee, S.M., Jahanshahi, M. (2012). Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 43(4), 1881-1886.
- Patel, K.D., Singh, R.K., Lee, J.H., Kim, H.W. (2019). Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. Materials Letters, 234, 148-154.
- Pawlik, A., Rehman, M.A.U., Nawaz, Q., Bastan, F.E., Sulka, G.D., Boccaccini, A.R. (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochimica Acta 307, 465-473.
- Prokhorov, E., Sanchez, A.G., Barcenas, G.L., Garcia, A.G.M., Kovalenko, Y., Munoz, E.M.R., Raucci, M.G., Buononore, G. (2018). Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics, 217, 151–159.
- Sikka, M.P. ve Midha, V.K. (2019). The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. Advanced Textiles for Wound Care Elsevier, s. 463-488.
- Singh, T., Singh, S., Singh, G. (2020). Fabrication and characterization of chitosan – hydroxyapatite – zirconium dioxide composites for biomedical applications. Materials Today: Proceedings, 26, 1878-1883.
- Teng, S.H., Liang, M.H., Wang, P., Luo, Y. (2016). Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization. Materials Science and Engineering: C, 58, 610-613.
- Tozar, A., Karahan, İ.H. (2018). A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Applied Surface Science, 452, 322-336.
- Wang, L.N., Luo, J.L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62(11), 1076-1086.
- Zhao, H., Jin, H., Cai, J. (2014). Preparation and characterization of nano-hydroxyapatite/chitosan composite with enhanced compressive strength by urease-catalyzed method. Materials Letters, 116, 293-295.
- Zima, A. (2018). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 175-184.
Investigation of Different Molecular Weights Chitosan Added Hydroxyapatite/Chitosan Biocomposite Coatings
Yıl 2023,
, 1703 - 1712, 01.09.2023
Tuncay Dilsizoğlu
,
İsmail Hakki Karahan
,
Ali Tozar
Öz
Which is the nearest of the bone structure of calcium phosphate rate (HAp, Ca10(PO4)6(OH)2) is hydroxyapatite. However, it is known that the mechanical properties of hydroxyapatite (HAp) such as strength and hardness are increased with polymer additives. Chitosan (CTS) was used as the polymer due to its low toxicity and high biocompatibility properties. Two types of chitosan were used while making HAp/CTS coatings. Medium molecular weight (MMW) and high molecular weight (HMW). The effect of HAp/CTS biocomposite coatings by doping with medium and high molecular weight chitosan was investigated. The coatings were produced by the ultrasonic assisted electrophoretic method. Their crystallographic and morphological structures were examined by FT-IR, XRD and SEM. The structure of the sample become more homogeneous as the high molecular weight chitosan value increased.
Kaynakça
- Alshaaer, M., Cuypers, H., Rahier, H., Wastiels, J. (2011). Production of monetite-based Inorganic Phosphate Cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research, 41(1), 30-37.
- Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., Lobo, A.O. (2013). The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Materials Science and Engineering: C, 33(5), 2620-2625.
- Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E., Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168, 1317-1323.
- Das, S., Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Biswas, P., Pal, K., Thakur, P., Das, K., Karmakar, P. (2018). Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Colloids and Surfaces B: Biointerfaces, 171, 300–307.
- Guan, S., Wen, C., Peng, L., Ren, C., Wang, X., Hu, Z. (2009). Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 255(13-14), 6433-6438.
- Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, H.E., Kim, S.G. (2011). Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surface and Coatings Technology, 205(8-9), 3112-3118.
- Lin, D.Y. ve Wang, X.X. (2010). Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surface and Coatings Technology, 204(20),3205-3213.
- Madl, A.K., Liong, M., Kovochich, M., Finley, B.L., Paustenbach, D.J., Oberdörster, G. (2015). Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1201-1215.
- Muley, S.V., Vidvans, A.N., Chaudhari, G.P., Udainiya, S. (2016). An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomaterialia, 30, 408-419.
- Nikpour, M.R., Rabiee, S.M., Jahanshahi, M. (2012). Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 43(4), 1881-1886.
- Patel, K.D., Singh, R.K., Lee, J.H., Kim, H.W. (2019). Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. Materials Letters, 234, 148-154.
- Pawlik, A., Rehman, M.A.U., Nawaz, Q., Bastan, F.E., Sulka, G.D., Boccaccini, A.R. (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochimica Acta 307, 465-473.
- Prokhorov, E., Sanchez, A.G., Barcenas, G.L., Garcia, A.G.M., Kovalenko, Y., Munoz, E.M.R., Raucci, M.G., Buononore, G. (2018). Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics, 217, 151–159.
- Sikka, M.P. ve Midha, V.K. (2019). The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. Advanced Textiles for Wound Care Elsevier, s. 463-488.
- Singh, T., Singh, S., Singh, G. (2020). Fabrication and characterization of chitosan – hydroxyapatite – zirconium dioxide composites for biomedical applications. Materials Today: Proceedings, 26, 1878-1883.
- Teng, S.H., Liang, M.H., Wang, P., Luo, Y. (2016). Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization. Materials Science and Engineering: C, 58, 610-613.
- Tozar, A., Karahan, İ.H. (2018). A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Applied Surface Science, 452, 322-336.
- Wang, L.N., Luo, J.L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62(11), 1076-1086.
- Zhao, H., Jin, H., Cai, J. (2014). Preparation and characterization of nano-hydroxyapatite/chitosan composite with enhanced compressive strength by urease-catalyzed method. Materials Letters, 116, 293-295.
- Zima, A. (2018). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 175-184.