Derleme
BibTex RIS Kaynak Göster

Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları

Yıl 2023, , 531 - 547, 01.03.2023
https://doi.org/10.21597/jist.1190593

Öz

Enerji verimliliği çalışmaları sonucunda sağlanan tasarruf son derece önemlidir. Nitekim tasarruf edilen enerji; kaynakların etkin kullanımı, insan sağlığı ve çevresel açıdan olmak üzere pek çok yönden katkı sağlar. Bu nedenle, enerji depolama teknolojilerinin enerji verimliliği çalışmalarına sağladığı faydalar önem arz etmektedir. Teknolojinin gelişmesi ve ihtiyaçların değişmesi ile enerjinin depolanarak başka bir yer ve/veya zamanda kullanılması talep görmektedir. Bu sebeple, enerjinin çeşitli formlarda depolanması üzerine araştırmacılar tarafından çalışmalar yürütülmektedir. Enerji depolama teknolojileri içinde ısıl enerji depolama yöntemi enerji tüketim miktarlarının ve maliyetlerinin azaltılması noktasında son yıllarda ilgi çeken araştırma konularından biri olmuştur. Gizli ısıl enerjinin depolanmasına imkan tanıyan ve Faz Değiştiren Malzeme (FDM) olarak adlandırılan yeni nesil enerji malzemeleri, bu hedefe ulaşmada kullanılabilecek umut vaat eden enerji depolama malzemelerindendir. Bu çalışmada, FDM’lere dayalı aktif ve pasif sistem uygulamaları incelenmiştir. Bu amaçla, bu konu üzerinde literatürde yapılan çalışmalar araştırılarak elde edilen sonuçlar sistematik bir şekilde sunulmuştur. Yapılan incelemeler sonucunda, FDM’lerin görece düşük ısıl iletkenliğe sahip olmaları sebebiyle çalışmaların genellikle ısı aktarımı ve performans iyileştirmeleri üzerine yoğunlaştığı görülmüştür.

Destekleyen Kurum

Yalova Üniversitesi

Proje Numarası

2020/YL/0022

Teşekkür

Bu çalışmanın gerçekleştirilmesinde proje desteği sağlayan Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (Proje Numarası: 2020/YL/0022) teşekkür ederiz.

Kaynakça

  • Abhat, A. (1976). Experimental investigation and analysis of a honeycomb-packed phase change material device. In: 11th AIAA thermophysics conference, 14-16 July, San Diego, CA, USA.
  • Akeiber, H., Nejat P., Majid M.Z.A., Wahid, M.A., Jomehzadeh F., Famileh I.Z., Calautit J.K., Hughes B.R., Zaki S.A. (2016. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470-1497.
  • Alawadhi, E.M., Alqallaf, H.J. (2011). Building roof with conical holes containing PCM to reduce the cooling load: Numerical study. Energy Conversion and Management, 52(8–9), 2958-2964.
  • Arıcı, M., Bilgin, F., Krajčík, M. Nižetić, S., Karabay, H. (2022. Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material, Energy, Volume 252.
  • Arkar, C., Medved, S. (2007). Free cooling of a building using PCM heat storage integrated into the ventilation system. Solar Energy, 81(9), 1078-1087.
  • ASHRAE Standard 55. (2004). Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating, and Air-conditioning Engineers, Atlanta, U.S.A.
  • Barzin, R., Chen, J.J.J, Young, B.R., Farid, M.M. (2015). Application of PCM energy storage in combination with night ventilation for space cooling. Applied Energy, 158, 412-421.
  • Bugaje, I.M. (1997). Enhancing the thermal response of latent heat storage system. Energy Res, 21(9), 759–66.
  • Butala, V., Stritih U., 2009. Experimental investigation of PCM cold storage. Energy and Buildings, 41(3), 354-359.
  • Cabeza, L.F., Ibanez, M., Sole, C., Roca, J., Nogues, M. (2006). Experimentation with a water tank including a PCM module. Solar Energy Materials and Solar Cells, 90(9), 1273–1282.
  • Chaiyat, N., Kiatsiriroat, T. (2014). Energy reduction of building air-conditioner with phase change material in Thailand. Case Studies in Thermal Engineering, 4, 175-186.
  • Chen, C., Guo, H., Liu, Y., Yue, H., Wang, C. (2008). A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 40(5), 882-890.
  • Chen, X., Zhang, Q.Z., Zhai, J., Ma, X. (2019). Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings. Renewable Energy, 138, 39-53.
  • Chopra, K., Tyagi, V.V., Pandey, A.K., Popli, S., Singh G., Sharma R.K., Sari A. (2022). Effect of simultaneous & consecutive melting/solidification of phase change material on domestic solar water heating system, Renewable Energy, 188, 329-348.
  • De Jong, A., Hoogendoorn, C. (1980). Improved of heat transport in paraffin for latent heat storage systems. In: Proceedings of TNO Symposium on Thermal Storage of Solar Energy (s. 99–110). Amsterdam, Holland,
  • Dinçer, İ., Rosen, M.A. (2010). “Thermal Energy Storage Methods” in Thermal Energy Storage Systems and Applications Second Edition (s. 83-190) içinde, Wiley, West Sussex, U. K.
  • Dolado P., Lazaro, A., Marin, J.M., Zalba, B. (2011). Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energy Conversion and Management, 52(4), 1890-1907.
  • Erek, A., İlken, Z., Acar, M.A. (2005). Experimental and numerical investigation of thermal energy storage with a finned tube. International Journal of Energy Research, 29, 283-301.
  • Falco, M.D., Capocelli, M., Giannattasio, A. (2016). Performance analysis of an innovative PCM-based device for cold storage in the civil air conditioning. Energy and Buildings, 122, 1-10.
  • Fath, H.E.S. (1998). Technical assessment of solar thermal energy storage technologies. Renewable Energy, 14(1-4), 35-40.
  • Gencel, O., Yaras, A., Hekimoğlu, G., Ustaoglu A., Erdogmus, E., Sutcu M., Sarı, A. (2022). Cement based-thermal energy storage mortar including blast furnace slag/capric acid shape-stabilized phase change material: Physical, mechanical, thermal properties and solar thermoregulation performance. Energy and Buildings, 258, 111849.
  • Gholamibozanjani, G., Farid, M. (2020). Application of an active PCM storage system into a building for heating/cooling load reduction, Energy, 210(1), 118572.
  • Gong, Z., Mujumdar, A.S. (1997). Finite-element analysis of cyclic heat transfer in a Shell and tube latent heat energy storage exchanger. Applied Thermal Engineering, 17(4), 583–591.
  • Güngör, A., Karaçaylı, İ., Şimşek, E., Canlı, Y. (2017). Geri dönüş havalı iklimlendirme sistemlerinde enerji ve ekserji analizi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3), 19-29.
  • Halawa, E., Bruno, F., Saman, W. (2005). Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Conversion and Management, 46(15–16), 2592-2604.
  • Hekimoğlu, G., Sarı, A. (2022). Shape stabilized attapulgite/myristic-palmitic acid composite PCM for thermal energy storage implementations in buildings. Materials Today: Proceedings, 58, 1350-1353.
  • Ibrahim, N.I., Al-Sulaiman, F.A., Rahman, S., Yilbas, B.S., Sahin, A.Z. (2017). Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews, 74, 26-50.
  • Iten, M., Liu, S. (2014). A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energy Conversion and Management, 77, 608-627.
  • Iten, M., Liu, S., Shukla, A. (2016). A review on the air-PCM-TES application for free cooling and heating in the buildings. Renewable and Sustainable Energy Reviews, 61, 175-186.
  • Karim, L., Barbeon, F., Gegout, P., Bontemps, A., Royon, L. (2014). New phase-change material components for thermal management of the light weight envelope of buildings. Energy and Buildings, 68: 703-706.
  • Kenisarin, M., Mahkamov K. (2007). Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, 11(9), 1913-1965.
  • Kuznik, F., Virgone, J., Noel J. (2008). Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28(11-12), 1291-1298.
  • Lazaro, A., Dolado, P., Marín, J.M., Zalba B. (2009). PCM–air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energy Conversion and Management, 50(3), 439-443.
  • Lecomte, D., Mayer, D. (1985). Design method for sizing a latent heat store/heat exchanger in a thermal system. Applied Energy, 21, 55-78.
  • Li, D., Wu, Y., Wang, B., Liu, C., Arıcı, M. (2020). Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials, 233, 117327.
  • Liu, M., Saman, W., Bruno, F. (2012). Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy Reviews, 16(4), 2118-2132.
  • Lu, S., Xu, B., Tang, X. (2020). Experimental study on double pipe PCM floor heating system under different operation strategies. Renewable Energy, 145, 1280-1291.
  • Luo, J, Zou, D, Wang, Y, Wang, S, Huang L. (2022). Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 430, 132741.
  • Marín, J.M., Zalba, B., Cabeza, L.F., Mehling, H. (2005). Improvement of a thermal energy storage using plates with paraffin-graphite composite. Heat Mass Transfer, 48(12), 2561–70.
  • Mert, H.H., Mert, M.S. (2020). Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 18, 148-161.
  • Mert, H.H., Mert, M.S., Mert, E.H. (2020). N-Hekzadekan/Montmorillonit Kompozit Faz Değiştiren Maddelerin Hazırlanması ve Özelliklerinin Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 229-239.
  • Mert, H.H., Okkay, H., Mert, M.S. (2022). Form-stable n-hexadecane/zinc borate composite phase change material for thermal energy storage applications in buildings. Sustainable Energy Technologies and Assessments, 50, 101836.
  • Mert, M.S., Mert, H.H., Sert, M. (2019). Investigation of Thermal Energy Storage Properties of a Microencapsulated Phase Change Material Using Response Surface Experimental Design Methodology. Applied Thermal Engineering, 149, 401-413.
  • Mert, M.S., Sert, M., Mert, H.H. (2018). Isıl enerji depolama sistemleri için organik faz değiştiren maddelerin mevcut durumu üzerine bir inceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174.
  • Mosaffa, A.H., Farshi, L.G. (2016). Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage. Applied Energy, 162, 515-526.
  • Mosaffa, A.H., Ferreira, C.A.I., Talati, F., Rosen, M.A., (2013). Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Conversion and Management, 67, 1-7.
  • Nagano, K., Takeda, S., Mochida, T., Shimakura, K., Nakamura, T. (2006). Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—Heat response in small scale experiments. Energy and Buildings, 38(5), 436-446.
  • Nakaso, K., Teshima, H., Yoshimura, A., Nogami, S., Hamada, Y., Fukai, J. (2008). Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chemical Engineering and Processing: Process Intensification, 47(5), 879-885.
  • Neeper, D.A. (2000). Thermal dynamics of wallboard with latent heat storage. Solar Energy, 68 (5): 393-403.
  • Ni, B., Du, Z., Zou, B., Li, Y., Ding, Y. (2020). Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications. Energy and Buildings, 214, 109895.
  • Nie, B., She, X., Du, Z., Xie C., Li, Y., He, Z., Ding, Y. (2019). System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications. Applied Energy, 251, 113254.
  • Nižetić, S., Jurčević, M, Čoko, D., Arıcı, M., Hoang A.T. (2021). Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches, Energy, 228, 120546.
  • Osterman, E., Butala, V., Stritih, U. (2015). PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy and Buildings, 106, 125-133.
  • Parameshwaran, R., Harikrishnan, S., Kalaiselvam, S. (2010). Energy efficient PCM-based variable air air conditioning system for modern buildings. Energy and Buildings, 42(8), 1353-1360.
  • Patel, J., Shukla, D., Raval, H., Mudgal, A., (2022, Experimental evaluation of the performance of latent heat storage unit integrated with solar air heater. International Journal of Ambient Energy, 43(1), 197-205.
  • Piselli, C., Castaldo V.L., Pisello, A.L. (2019). How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. Solar Energy, 192, 106-119.
  • PlusICE PCM, 13.02.2021, 20:13, [Çevrimiçi] Erişim adresi: https://www.pcmproducts.net/
  • Rahdar, M.H., Emamzadeh, A., Ataei, A. (2016). A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings. Applied Thermal Engineering, 96, 391-399.
  • Regin, A. F., Solanki, S. C., Saini, J. S. (2006). Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations. Renewable Energy, 31(13), 2025-2041.
  • Robak, C., Bergmand, T., Faghri, A., (2011). Enhancement of latent heat energy using embedded heat pipes. International Journal of Heat and Mass Transfer, 54(15-16), 3476–84.
  • RubiTherm GmbH, 13.02.2021, 19:50 [Çevrimiçi] Erişim adresi: https://www.rubitherm.eu/
  • Saffari M., Gracia, A., Ushak, S., Cabeza, L.F. (2016). Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy and Buildings, 112, 159-172.
  • Saxena, R., Rakshit, D., Kuashnik, S.C. (2020). Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings, Renewable Energy, 149, 587-599.
  • Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318-345.
  • Shukla, A., Sharma, A., Biwolé, P.H., (Eds.). (2020). Latent Heat-Based Thermal Energy Storage Systems: Materials, Applications, and the Energy Market, 1st ed., Apple Academic Press, Canada.
  • Stritih, U., 2004. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. International Journal of Heat and Mass Transfer, 47(12-13), 2841–2847.
  • Takeda, S., Nagano, K., Mochida, T., Shimakura, K. (2004). Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Solar Energy, 77(3), 329-338.
  • Teggar, M., Ajarostaghi, S.S.M., Yıldız, Ç., Arıcı, M., Ismail, K.A.R., Niyas, H., Lino, F.A.M., Mert, M.S., Khalid, M. (2021). Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: A state-of-the-art review. Journal of Energy Storage, 44, 103340.
  • Tokuç, A., Başaran, T., Yesügey, S.C. (2015). An experimental and numerical investigation on the use of phase change materials in building elements: The case of a flat roof in Istanbul. Energy and Buildings, 102, 91-104.
  • United Nations (2017). UN, 71/313, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development, Tech. rep., A/RES/71/313. New York, USA: United Nations. Erişim adresi: https://digitallibrary.un.org/record/1291226
  • Waqas, A., Kumar, S. (2011). Utilization of latent heat storage unit for comfort ventilation in buildings in hot and dry climates. International Journal of Green Energy, 8(1), 1-24.
  • Weng, Y.C., Cho, H.P., Chang, C.C., Chen, S.L. (2011). Heat pipe with PCM for electronic cooling. Applied Energy, 88 (5), 1825-1833.
  • Xu, X., Zhang, Y., Lin, K., Di, H., Yang, R. (2005). Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy and Buildings, 37(10), 1084-1091.
  • Yadav, C., Sahoo, R.R., 2022. Thermal analysis comparison of nano-additive PCM-based engine waste heat recovery thermal storage systems: an experimental study. Journal of Thermal Analysis and Calorimetry, 147, 2785–2802.
  • Yanbing, K., Yi, J., Yinping, Z. (2003). Modeling and experimental study on an innovative passive cooling system—NVP system. Energy and Buildings, 35(4), 417-425.
  • Yuksel, N., Avci, A., Kilic M. (2006). A model for latent heat energy storage systems. International Journal of Energy Research, 30(14), 1146–1157.
  • Yüksel, N., Avcı A. (2013). Gizli ısı depolamalı kutu tipi iki güneş fırınının deneysel olarak karşılaştırılması. Uludağ Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 18(1), 81-92.

Latent Thermal Energy Storage Systems: Active and Passive System Applications Using Phase Change Materials

Yıl 2023, , 531 - 547, 01.03.2023
https://doi.org/10.21597/jist.1190593

Öz

The savings achieved as a result of energy efficiency studies are extremely important. As a matter of fact, the energy saved contributes in many ways, including effective use of resources, human health and environmental aspects. Therefore, the benefits of energy storage technologies to energy efficiency studies are significant. With the development of technology and changed needs, energy is demanded to be stored and used elsewhere and/or at another time. For this reason, studies are carried out by researchers on the storage of energy in various forms. The thermal energy storage method among energy storage technologies has been one of the research topics that have attracted attention in recent years in terms of reducing energy consumption amounts and costs. The new generation energy materials, called Phase Change Material (PCM), which enables the storage of latent thermal energy, are among the promising energy storage materials that can be used to achieve this goal. In this study, active and passive system applications based on PCMs were examined. For this purpose, the results obtained by researching the studies in the literature on this subject are presented in a systematic way. As a result of the examinations, it was seen that the studies generally focused on heat transfer and performance improvements due to the relatively low thermal conductivity of PCMs.

Proje Numarası

2020/YL/0022

Kaynakça

  • Abhat, A. (1976). Experimental investigation and analysis of a honeycomb-packed phase change material device. In: 11th AIAA thermophysics conference, 14-16 July, San Diego, CA, USA.
  • Akeiber, H., Nejat P., Majid M.Z.A., Wahid, M.A., Jomehzadeh F., Famileh I.Z., Calautit J.K., Hughes B.R., Zaki S.A. (2016. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470-1497.
  • Alawadhi, E.M., Alqallaf, H.J. (2011). Building roof with conical holes containing PCM to reduce the cooling load: Numerical study. Energy Conversion and Management, 52(8–9), 2958-2964.
  • Arıcı, M., Bilgin, F., Krajčík, M. Nižetić, S., Karabay, H. (2022. Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material, Energy, Volume 252.
  • Arkar, C., Medved, S. (2007). Free cooling of a building using PCM heat storage integrated into the ventilation system. Solar Energy, 81(9), 1078-1087.
  • ASHRAE Standard 55. (2004). Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating, and Air-conditioning Engineers, Atlanta, U.S.A.
  • Barzin, R., Chen, J.J.J, Young, B.R., Farid, M.M. (2015). Application of PCM energy storage in combination with night ventilation for space cooling. Applied Energy, 158, 412-421.
  • Bugaje, I.M. (1997). Enhancing the thermal response of latent heat storage system. Energy Res, 21(9), 759–66.
  • Butala, V., Stritih U., 2009. Experimental investigation of PCM cold storage. Energy and Buildings, 41(3), 354-359.
  • Cabeza, L.F., Ibanez, M., Sole, C., Roca, J., Nogues, M. (2006). Experimentation with a water tank including a PCM module. Solar Energy Materials and Solar Cells, 90(9), 1273–1282.
  • Chaiyat, N., Kiatsiriroat, T. (2014). Energy reduction of building air-conditioner with phase change material in Thailand. Case Studies in Thermal Engineering, 4, 175-186.
  • Chen, C., Guo, H., Liu, Y., Yue, H., Wang, C. (2008). A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 40(5), 882-890.
  • Chen, X., Zhang, Q.Z., Zhai, J., Ma, X. (2019). Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings. Renewable Energy, 138, 39-53.
  • Chopra, K., Tyagi, V.V., Pandey, A.K., Popli, S., Singh G., Sharma R.K., Sari A. (2022). Effect of simultaneous & consecutive melting/solidification of phase change material on domestic solar water heating system, Renewable Energy, 188, 329-348.
  • De Jong, A., Hoogendoorn, C. (1980). Improved of heat transport in paraffin for latent heat storage systems. In: Proceedings of TNO Symposium on Thermal Storage of Solar Energy (s. 99–110). Amsterdam, Holland,
  • Dinçer, İ., Rosen, M.A. (2010). “Thermal Energy Storage Methods” in Thermal Energy Storage Systems and Applications Second Edition (s. 83-190) içinde, Wiley, West Sussex, U. K.
  • Dolado P., Lazaro, A., Marin, J.M., Zalba, B. (2011). Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energy Conversion and Management, 52(4), 1890-1907.
  • Erek, A., İlken, Z., Acar, M.A. (2005). Experimental and numerical investigation of thermal energy storage with a finned tube. International Journal of Energy Research, 29, 283-301.
  • Falco, M.D., Capocelli, M., Giannattasio, A. (2016). Performance analysis of an innovative PCM-based device for cold storage in the civil air conditioning. Energy and Buildings, 122, 1-10.
  • Fath, H.E.S. (1998). Technical assessment of solar thermal energy storage technologies. Renewable Energy, 14(1-4), 35-40.
  • Gencel, O., Yaras, A., Hekimoğlu, G., Ustaoglu A., Erdogmus, E., Sutcu M., Sarı, A. (2022). Cement based-thermal energy storage mortar including blast furnace slag/capric acid shape-stabilized phase change material: Physical, mechanical, thermal properties and solar thermoregulation performance. Energy and Buildings, 258, 111849.
  • Gholamibozanjani, G., Farid, M. (2020). Application of an active PCM storage system into a building for heating/cooling load reduction, Energy, 210(1), 118572.
  • Gong, Z., Mujumdar, A.S. (1997). Finite-element analysis of cyclic heat transfer in a Shell and tube latent heat energy storage exchanger. Applied Thermal Engineering, 17(4), 583–591.
  • Güngör, A., Karaçaylı, İ., Şimşek, E., Canlı, Y. (2017). Geri dönüş havalı iklimlendirme sistemlerinde enerji ve ekserji analizi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3), 19-29.
  • Halawa, E., Bruno, F., Saman, W. (2005). Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Conversion and Management, 46(15–16), 2592-2604.
  • Hekimoğlu, G., Sarı, A. (2022). Shape stabilized attapulgite/myristic-palmitic acid composite PCM for thermal energy storage implementations in buildings. Materials Today: Proceedings, 58, 1350-1353.
  • Ibrahim, N.I., Al-Sulaiman, F.A., Rahman, S., Yilbas, B.S., Sahin, A.Z. (2017). Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews, 74, 26-50.
  • Iten, M., Liu, S. (2014). A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energy Conversion and Management, 77, 608-627.
  • Iten, M., Liu, S., Shukla, A. (2016). A review on the air-PCM-TES application for free cooling and heating in the buildings. Renewable and Sustainable Energy Reviews, 61, 175-186.
  • Karim, L., Barbeon, F., Gegout, P., Bontemps, A., Royon, L. (2014). New phase-change material components for thermal management of the light weight envelope of buildings. Energy and Buildings, 68: 703-706.
  • Kenisarin, M., Mahkamov K. (2007). Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, 11(9), 1913-1965.
  • Kuznik, F., Virgone, J., Noel J. (2008). Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28(11-12), 1291-1298.
  • Lazaro, A., Dolado, P., Marín, J.M., Zalba B. (2009). PCM–air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energy Conversion and Management, 50(3), 439-443.
  • Lecomte, D., Mayer, D. (1985). Design method for sizing a latent heat store/heat exchanger in a thermal system. Applied Energy, 21, 55-78.
  • Li, D., Wu, Y., Wang, B., Liu, C., Arıcı, M. (2020). Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials, 233, 117327.
  • Liu, M., Saman, W., Bruno, F. (2012). Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy Reviews, 16(4), 2118-2132.
  • Lu, S., Xu, B., Tang, X. (2020). Experimental study on double pipe PCM floor heating system under different operation strategies. Renewable Energy, 145, 1280-1291.
  • Luo, J, Zou, D, Wang, Y, Wang, S, Huang L. (2022). Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 430, 132741.
  • Marín, J.M., Zalba, B., Cabeza, L.F., Mehling, H. (2005). Improvement of a thermal energy storage using plates with paraffin-graphite composite. Heat Mass Transfer, 48(12), 2561–70.
  • Mert, H.H., Mert, M.S. (2020). Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 18, 148-161.
  • Mert, H.H., Mert, M.S., Mert, E.H. (2020). N-Hekzadekan/Montmorillonit Kompozit Faz Değiştiren Maddelerin Hazırlanması ve Özelliklerinin Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 229-239.
  • Mert, H.H., Okkay, H., Mert, M.S. (2022). Form-stable n-hexadecane/zinc borate composite phase change material for thermal energy storage applications in buildings. Sustainable Energy Technologies and Assessments, 50, 101836.
  • Mert, M.S., Mert, H.H., Sert, M. (2019). Investigation of Thermal Energy Storage Properties of a Microencapsulated Phase Change Material Using Response Surface Experimental Design Methodology. Applied Thermal Engineering, 149, 401-413.
  • Mert, M.S., Sert, M., Mert, H.H. (2018). Isıl enerji depolama sistemleri için organik faz değiştiren maddelerin mevcut durumu üzerine bir inceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174.
  • Mosaffa, A.H., Farshi, L.G. (2016). Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage. Applied Energy, 162, 515-526.
  • Mosaffa, A.H., Ferreira, C.A.I., Talati, F., Rosen, M.A., (2013). Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Conversion and Management, 67, 1-7.
  • Nagano, K., Takeda, S., Mochida, T., Shimakura, K., Nakamura, T. (2006). Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—Heat response in small scale experiments. Energy and Buildings, 38(5), 436-446.
  • Nakaso, K., Teshima, H., Yoshimura, A., Nogami, S., Hamada, Y., Fukai, J. (2008). Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chemical Engineering and Processing: Process Intensification, 47(5), 879-885.
  • Neeper, D.A. (2000). Thermal dynamics of wallboard with latent heat storage. Solar Energy, 68 (5): 393-403.
  • Ni, B., Du, Z., Zou, B., Li, Y., Ding, Y. (2020). Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications. Energy and Buildings, 214, 109895.
  • Nie, B., She, X., Du, Z., Xie C., Li, Y., He, Z., Ding, Y. (2019). System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications. Applied Energy, 251, 113254.
  • Nižetić, S., Jurčević, M, Čoko, D., Arıcı, M., Hoang A.T. (2021). Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches, Energy, 228, 120546.
  • Osterman, E., Butala, V., Stritih, U. (2015). PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy and Buildings, 106, 125-133.
  • Parameshwaran, R., Harikrishnan, S., Kalaiselvam, S. (2010). Energy efficient PCM-based variable air air conditioning system for modern buildings. Energy and Buildings, 42(8), 1353-1360.
  • Patel, J., Shukla, D., Raval, H., Mudgal, A., (2022, Experimental evaluation of the performance of latent heat storage unit integrated with solar air heater. International Journal of Ambient Energy, 43(1), 197-205.
  • Piselli, C., Castaldo V.L., Pisello, A.L. (2019). How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. Solar Energy, 192, 106-119.
  • PlusICE PCM, 13.02.2021, 20:13, [Çevrimiçi] Erişim adresi: https://www.pcmproducts.net/
  • Rahdar, M.H., Emamzadeh, A., Ataei, A. (2016). A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings. Applied Thermal Engineering, 96, 391-399.
  • Regin, A. F., Solanki, S. C., Saini, J. S. (2006). Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations. Renewable Energy, 31(13), 2025-2041.
  • Robak, C., Bergmand, T., Faghri, A., (2011). Enhancement of latent heat energy using embedded heat pipes. International Journal of Heat and Mass Transfer, 54(15-16), 3476–84.
  • RubiTherm GmbH, 13.02.2021, 19:50 [Çevrimiçi] Erişim adresi: https://www.rubitherm.eu/
  • Saffari M., Gracia, A., Ushak, S., Cabeza, L.F. (2016). Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy and Buildings, 112, 159-172.
  • Saxena, R., Rakshit, D., Kuashnik, S.C. (2020). Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings, Renewable Energy, 149, 587-599.
  • Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318-345.
  • Shukla, A., Sharma, A., Biwolé, P.H., (Eds.). (2020). Latent Heat-Based Thermal Energy Storage Systems: Materials, Applications, and the Energy Market, 1st ed., Apple Academic Press, Canada.
  • Stritih, U., 2004. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. International Journal of Heat and Mass Transfer, 47(12-13), 2841–2847.
  • Takeda, S., Nagano, K., Mochida, T., Shimakura, K. (2004). Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Solar Energy, 77(3), 329-338.
  • Teggar, M., Ajarostaghi, S.S.M., Yıldız, Ç., Arıcı, M., Ismail, K.A.R., Niyas, H., Lino, F.A.M., Mert, M.S., Khalid, M. (2021). Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: A state-of-the-art review. Journal of Energy Storage, 44, 103340.
  • Tokuç, A., Başaran, T., Yesügey, S.C. (2015). An experimental and numerical investigation on the use of phase change materials in building elements: The case of a flat roof in Istanbul. Energy and Buildings, 102, 91-104.
  • United Nations (2017). UN, 71/313, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development, Tech. rep., A/RES/71/313. New York, USA: United Nations. Erişim adresi: https://digitallibrary.un.org/record/1291226
  • Waqas, A., Kumar, S. (2011). Utilization of latent heat storage unit for comfort ventilation in buildings in hot and dry climates. International Journal of Green Energy, 8(1), 1-24.
  • Weng, Y.C., Cho, H.P., Chang, C.C., Chen, S.L. (2011). Heat pipe with PCM for electronic cooling. Applied Energy, 88 (5), 1825-1833.
  • Xu, X., Zhang, Y., Lin, K., Di, H., Yang, R. (2005). Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy and Buildings, 37(10), 1084-1091.
  • Yadav, C., Sahoo, R.R., 2022. Thermal analysis comparison of nano-additive PCM-based engine waste heat recovery thermal storage systems: an experimental study. Journal of Thermal Analysis and Calorimetry, 147, 2785–2802.
  • Yanbing, K., Yi, J., Yinping, Z. (2003). Modeling and experimental study on an innovative passive cooling system—NVP system. Energy and Buildings, 35(4), 417-425.
  • Yuksel, N., Avci, A., Kilic M. (2006). A model for latent heat energy storage systems. International Journal of Energy Research, 30(14), 1146–1157.
  • Yüksel, N., Avcı A. (2013). Gizli ısı depolamalı kutu tipi iki güneş fırınının deneysel olarak karşılaştırılması. Uludağ Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 18(1), 81-92.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Furkan Talu 0000-0002-3815-7957

Mehmet Selçuk Mert 0000-0002-8646-0133

Hatice Hande Mert 0000-0003-0743-1981

Proje Numarası 2020/YL/0022
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 18 Ekim 2022
Kabul Tarihi 28 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Talu, F., Mert, M. S., & Mert, H. H. (2023). Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları. Journal of the Institute of Science and Technology, 13(1), 531-547. https://doi.org/10.21597/jist.1190593
AMA Talu F, Mert MS, Mert HH. Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları. Iğdır Üniv. Fen Bil Enst. Der. Mart 2023;13(1):531-547. doi:10.21597/jist.1190593
Chicago Talu, Furkan, Mehmet Selçuk Mert, ve Hatice Hande Mert. “Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif Ve Pasif Sistem Uygulamaları”. Journal of the Institute of Science and Technology 13, sy. 1 (Mart 2023): 531-47. https://doi.org/10.21597/jist.1190593.
EndNote Talu F, Mert MS, Mert HH (01 Mart 2023) Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları. Journal of the Institute of Science and Technology 13 1 531–547.
IEEE F. Talu, M. S. Mert, ve H. H. Mert, “Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 1, ss. 531–547, 2023, doi: 10.21597/jist.1190593.
ISNAD Talu, Furkan vd. “Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif Ve Pasif Sistem Uygulamaları”. Journal of the Institute of Science and Technology 13/1 (Mart 2023), 531-547. https://doi.org/10.21597/jist.1190593.
JAMA Talu F, Mert MS, Mert HH. Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:531–547.
MLA Talu, Furkan vd. “Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif Ve Pasif Sistem Uygulamaları”. Journal of the Institute of Science and Technology, c. 13, sy. 1, 2023, ss. 531-47, doi:10.21597/jist.1190593.
Vancouver Talu F, Mert MS, Mert HH. Gizli Isıl Enerji Depolama Sistemleri: Faz Değiştiren Malzemelerin Kullanıldığı Aktif ve Pasif Sistem Uygulamaları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):531-47.