Araştırma Makalesi
BibTex RIS Kaynak Göster

Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints

Yıl 2023, , 1970 - 1982, 01.09.2023
https://doi.org/10.21597/jist.1212972

Öz

In the current study, the effects of hybrid nanoparticles on the shear and fracture behaviours of adhesively bonded single lap joints (SLJs) using Aluminum substrates were investigated. To this aim, nano-silica and graphene nanoplatelet (GNP) particles were used as filler materials in Araldite 2014-2 epoxy-based adhesive. The SLJ samples prepared at seven different configurations were subjected to lap shear tests. Additionally, macro and SEM views taken from damaged surfaces of the samples were examined to understand the influence of nanoparticle addition on the fracture characteristics of the joints. The experimental findings showed that all nanoparticle-doped samples, whether single or hybrid, exhibited remarkable improvements in shear strength compared to pure ones. The maximum improvements were obtained from the H2 sample having 1 wt.% nano-silica and 0.5 wt.% GNP. The maximum shear strength was 13.62 MPa which was 213% higher than pure samples (4.35 MPa). It was determined that some toughening mechanisms such as crack deviation, crack bridging and plastic void formations had a crucial role in the enhancements of the samples. However, higher amounts of nanoparticle inclusion such as H4 (1.5 wt.% nano-silica+1 wt.% GNP) showed a decrease in shear strength, compared to the maximum one, due to the material degradation caused by agglomerations. In conclusion, nano-silica and GNP particles proved they could be used together by exhibiting a synergetic effect in the adhesive joints.

Kaynakça

  • Abbasi Z., Jazani O. M., Sohrabian M. (2021). Designing of High-Performance Epoxy Adhesive with Recycled Polymers and Silica Nano Particles (SNPs) in Epoxy/Carbon Fiber Composite-Steel Bonded Joints: Mechanical Properties, Thermal Stability and Toughening Mechanisms. Journal of the Taiwan Institute of Chemical Engineers, 123, 310-327.
  • Adin H. (2013). The Investigation of Effect of Adherend Thickness on Scarf Lap Joints. Materialwissenschaft und Werkstofftechnik, 44(10), 839-846.
  • Adin H, Adin MŞ, 2022. Effect of Particles on Tensile and Bending Properties of Jute Epoxy Composites. Materials Testing, 64(3): 401-411.
  • Adin M. Ş., Kılıçkap E. (2021). Strength of Double-reinforced Adhesive Joints. Materials Testing, 63(2), 176-181.
  • Agnello S., Alessi A., Buscarino G., Piazza A., Maio A., Botta L., Scaffaro R. (2017). Structural and Thermal Stability of Graphene Oxide-Silica Nanoparticles Nanocomposites. Journal of Alloys and Compounds, 695, 2054-2064.
  • Ahmadi Z. (2019). Nanostructured Epoxy Adhesives: A Review. Progress in Organic Coatings, 135, 449-453.
  • Akpinar S. (2013). Effects of Different Curvature Patches on The Strength of Double-Strap Adhesive Joints. The Journal of Adhesion, 89(12), 937-947.
  • Alies M. S. I., Khalil N. Z. (2022). Effect of Alumina/Graphene Hybrid Nano Reinforcement to The Adhesion and Mechanical Properties of Adhesively Bonded Aluminum Alloy with Epoxy. Materials Today: Proceedings, 51, 1437-1443.
  • Atahan M. G., Apalak M. K. (2022). Experimental Investigation of Oblique Impact Behavior of Adhesively Bonded Composite Single-Lap Joints. Applied Composite Materials, 29(3), 1293-1319.
  • Ayatollahi M. R., Nemati Giv A., Razavi S. M. J., Khoramishad H. (2017). Mechanical Properties of Adhesively Single Lap-Bonded Joints Reinforced with Multi-Walled Carbon Nanotubes and Silica Nanoparticles. The Journal of Adhesion, 93(11), 896-913.
  • Bjørgum A., Lapique F., Walmsley J., Redford K. (2003). Anodising as Pre-Treatment for Structural Bonding. International Journal of Adhesion and Adhesives, 23(5), 401-412.
  • Bozkurt Ö. Y., Bulut M., Erkliğ A., Faydh W. A. (2019). Axial and Lateral Buckling Analysis of Fiber Reinforced S-Glass/Epoxy Composites Containing Nano-Clay Particles. Composites Part B: Engineering, 158, 82-91.
  • Bulut M. (2017). Mechanical Characterization of Basalt/Epoxy Composite Laminates Containing Graphene Nanopellets. Composites Part B: Engineering, 122, 71-78.
  • Cakir M. V., Kinay D. (2021). MWCNT, Nano‐Silica, and Nano‐Clay Additives Effects on Adhesion Performance of Dissimilar Materials Bonded Joints. Polymer Composites, 42(11), 5880-5892.
  • Chatterjee S., Nafezarefi F., Tai N. H., Schlagenhauf L., Nüesch F. A., Chu B. T. T. (2012). Size and Synergy Effects of Nanofiller Hybrids İncluding Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites. Carbon, 50(15), 5380-5386.
  • Çakır M. V., Özbek Ö. (2022). Mechanical Performance and Damage Analysis of GNP-Reinforced Adhesively Bonded Joints Under Shear and Bending Loads. The Journal of Adhesion, 99(5), 869-892.
  • EN ISO 10365. (1995). Adhesives–designation of Main Failure Patterns, London: British Standards Institution.
  • Esendemir Ü., Şimşek R., Saraç M. F. (2020). Hibrit Kompozit Yapılarda Nanokil İlavesinin Darbe Davranışına Etkisi. Journal of the Institute of Science and Technology, 10(4): 2831-2839.
  • Gamdani F., Boukhili R., Vadean A. (2022). Fatigue Behavior of Hybrid Multi-Bolted-Bonded Single-Lap Joints in Woven Composite Plates. International Journal of Fatigue, 158, 106738.
  • Ghadge R. R., Prakash S., Ganorkar S. A. (2021). Experimental Investigations on Fatigue Life Enhancement of Composite (E-Glass/Epoxy) Single Lap Joint with Graphene Oxide Modified Adhesive. Materials Research Express, 8(2), 025202.
  • Gupta S. K., Shukla D. K., Kaustubh Ravindra D. (2021). Effect of Nanoalumina in Epoxy Adhesive on Lap Shear Strength and Fracture Toughness of Aluminium Joints. The Journal of Adhesion, 97(2), 117-139.
  • Gültekin K., Akpinar S., Gürses A., Eroglu Z., Cam S., Akbulut H., Keskin Z., Ozel A. (2016). The Effects of Graphene Nanostructure Reinforcement on the Adhesive Method and the Graphene Reinforcement Ratio on the Failure Load in Adhesively Bonded Joints. Composites Part B: Engineering, 98, 362-369.
  • Jojibabu P., Zhang Y. X., Rider A. N., Wang J., Prusty B. G. (2019). Synergetic Effects of Carbon Nanotubes and Triblock Copolymer on The Lap Shear Strength of Epoxy Adhesive Joints. Composites Part B: Engineering, 178, 107457.
  • Kanar B., Akpinar S., Akpinar I. A., Akbulut H., Ozel A. (2018). The Fracture Behaviour of Nanostructure Added Adhesives Under Ambient Temperature and Thermal Cyclic Conditions. Theoretical and Applied Fracture Mechanics, 97, 120-130.
  • Khoramishad H., Ebrahimijamal M., Fasihi M. (2017). The Effect of Graphene Oxide Nano‐Platelets on Fracture Behavior of Adhesively Bonded Joints. Fatigue & Fracture of Engineering Materials & Structures, 40(11), 1905-1916.
  • Khoramishad H. A., Hosseini Vafa S. M. B. (2018). Effect of Aligning Graphene Oxide Nanoplatelets Using Direct Current Electric Field on Fracture Behaviour of Adhesives. Fatigue & Fracture of Engineering Materials & Structures, 41(12), 2514-2529.
  • Kumar K. S., Selvakumar P., Jagadeeswari R., Dharmaraj M., Uvanshankar K. R., Yogeswaran B. (2021). Stress Analysis of Riveted and Bolted Joints Using Analytical and Experimental Approach. Materials Today: Proceedings, 42, 1091-1099.
  • Lee C., Wei X., Kysar J. W., Hone J. (2008). Measurement of The Elastic Properties and İntrinsic Strength of Monolayer Graphene. Science, 321(5887), 385-388.
  • NajiMehr H., Shariati M., Zamani P., Da Silva L. F., Ghahremani Moghadam D. (2022). Investigating on The Influence of Multi‐Walled Carbon Nanotube and Graphene Nanoplatelet Additives on Residual Strength of Bonded Joints Subjected to Partial Fatigue Loading. Journal of Applied Polymer Science, 139(18), 52069.
  • Ozcan U. E., Karabork F., Yazman S., Akdemir A. (2019). Effect of Silica/Graphene Nanohybrid Particles on The Mechanical Properties of Epoxy Coatings. Arabian Journal for Science and Engineering, 44(6), 5723-5731.
  • Özbek Ö., Çakır M. V. (2022). MWCNT and Nano-Silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP Plates. International Journal of Adhesion and Adhesives, 117, 103159.
  • Özbek Ö, Çakır MV, Doğan NF, 2022. Effect of Halloysite Nanotube Additive on Shear Strength in Al-GFRP Single Lap Adhesive Joint. Journal of Materials and Mechatronics: A, 3(1): 117-128.
  • Quan D., Pearson R. A., Ivankovic A. (2018). Interaction of Toughening Mechanisms in Ternary Nanocomposites. Polymer Composites, 39(10), 3482-3496.
  • Rao Q., Huang H., Ouyang Z., Peng X. (2020). Synergy Effects of Multi-Walled Carbon Nanotube and Graphene Nanoplate Filled Epoxy Adhesive on The Shear Properties of Unidirectional Composite Bonded Joints. Polymer Testing, 82, 106299.
  • Razavi S. M. J., Ayatollahi M. R., Giv A. N., Khoramishad H. (2018). Single Lap Joints Bonded with Structural Adhesives Reinforced with A Mixture of Silica Nanoparticles and Multi Walled Carbon Nanotubes. International Journal of Adhesion and Adhesives, 80, 76-86.
  • Sadigh M. A. S., Marami G. (2016). Investigating The Effects of Reduced Graphene Oxide Additive on The Tensile Strength of Adhesively Bonded Joints at Different Extension Rates. Materials & Design, 92, 36-43.
  • Saraç İ., Adin H., Temiz Ş. (2019). Investigation of The Effect of Use of Nano-Al2O3, Nano-Tio2 and Nano-Sio2 Powders on Strength of Single Lap Joints Bonded with Epoxy Adhesive. Composites Part B: Engineering, 166, 472-482.
  • Scaffaro R., Maio A. (2017). A Green Method to Prepare Nanosilica Modified Graphene Oxide to Inhibit Nanoparticles Re-Aggregation During Melt Processing. Chemical Engineering Journal, 308, 1034-1047.
  • Silvestre J., Silvestre N., De Brito J. (2015). An Overview on The Improvement of Mechanical Properties of Ceramics Nanocomposites. Journal of Nanomaterials, 3, 106494.
  • Soltannia B., Taheri F. (2022). Influence of Nano-Reinforcement on The Mechanical Behavior of Adhesively Bonded Single-Lap Joints Subjected to Static, Quasi-Static, and Impact Loading. Journal of Adhesion Science and Technology, 29(5), 424-442.
  • Soydan A. M., Akel M., Akdeniz R. (2019). Nano Bor İçerikli Yeni Nesil PEMFC Nanokompozit Membranların Üretimi ve Karakterizasyonu. Journal of the Institute of Science and Technology, 9(1), 20-29.
  • Standard ASTM D5868-01. (2008). Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding, ASTM International, West Conshohocken, PA.
  • Uzun M., Akçadağ B. (2022). Bonding of Cycloid, Epicycloid, Involute, 450 Curved Surfaces and Investigation of Mechanical Properties by Finite Element Method. Journal of the University Institute of Science and Technology, 12(2), 990-1002.
  • Wang D., Dong Y., Liu L., Zhu M., Wang H., Liu C. (2022). Effect of Pulsed Laser and Laser-arc Hybrid on Aluminum/Steel Riveting-welding Hybrid Bonding Technology. Journal of Materials Research and Technology, 17, 1043-1053.
  • Wu S., Ladani R. B., Zhang J., Bafekrpour E., Ghorbani K., Mouritz A. P., Kinloch A. J., Wang C. H. (2015). Aligning Multilayer Graphene Flakes with An External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites. Carbon, 94, 607-618.
  • Zamani P., Alaei M. H., da Silva L. F., Ghahremani‐Moghadam D. (2022). On The Static and Fatigue Life of Nano‐Reinforced Al‐GFRP Bonded Joints Under Different Dispersion Treatments. Fatigue & Fracture of Engineering Materials & Structures, 45(4), 1088-1110.

Nano-silika ve GNP Hibrit Nanoparçacık Takviyeli Tek Bindirmeli Bağlantıların Kesme ve Kırılma Özellikleri

Yıl 2023, , 1970 - 1982, 01.09.2023
https://doi.org/10.21597/jist.1212972

Öz

Mevcut çalışmada, hibrit nanoparçacıkların, alüminyum altlıklar kullanılarak bağlanmış tek bindirmeli bağlantıların (SLJ) kayma ve kırılma davranışları üzerindeki etkileri araştırıldı. Bu amaçla, Araldite 2014-2 epoksi bazlı yapıştırıcıda dolgu malzemesi olarak nano-silika ve nano grafen (GNP) parçacıkları kullanılmıştır. Yedi farklı konfigürasyonda hazırlanan SLJ numuneleri bindirme kesme testine tabi tutulmuştur. Ek olarak, nanoparçacık ilavesinin bağlantıların kırılma özelliklerine etkisini anlamak için numunelerin hasarlı yüzeylerinden alınan makro ve SEM görüntüleri incelenmiştir. Deneysel bulgular ister tek ister hibrit olsun, tüm nanoparçacık katkılı numunelerin, saf olanlara kıyasla kayma mukavemetinde dikkate değer iyileşmeler sergilediğini göstermiştir. Maksimum iyileştirmeler, ağırlıkça %1 nano-silika ve ağırlıkça %0,5 GNP içeren H2 örneğinden elde edilmiştir. Maksimum kayma dayanımı saf numunelere (4,35 MPa) göre %213 daha yüksek olarak 13,62 MPa görülmüştür. Çatlak sapması, çatlak köprüleme ve boşluk oluşumu gibi bazı toklaştırma mekanizmalarının numunelerin iyileştirilmesinde kilit rol oynadığı belirlenmiştir. Bununla birlikte, H4 (ağırlıkça %1,5 nano-silika + ağırlıkça %1 GNP) gibi daha yüksek miktarlarda nanoparçacık eklenmesi, topaklanmaların neden olduğu malzeme bozulması nedeniyle maksimuma kıyasla kayma mukavemetinde düşüş göstermiştir. Sonuç olarak, nano-silika ve GNP parçacıkları, adhezif bağlantılarda sinerjik etki sergileyerek birlikte kullanılabileceğini kanıtlamıştır

Kaynakça

  • Abbasi Z., Jazani O. M., Sohrabian M. (2021). Designing of High-Performance Epoxy Adhesive with Recycled Polymers and Silica Nano Particles (SNPs) in Epoxy/Carbon Fiber Composite-Steel Bonded Joints: Mechanical Properties, Thermal Stability and Toughening Mechanisms. Journal of the Taiwan Institute of Chemical Engineers, 123, 310-327.
  • Adin H. (2013). The Investigation of Effect of Adherend Thickness on Scarf Lap Joints. Materialwissenschaft und Werkstofftechnik, 44(10), 839-846.
  • Adin H, Adin MŞ, 2022. Effect of Particles on Tensile and Bending Properties of Jute Epoxy Composites. Materials Testing, 64(3): 401-411.
  • Adin M. Ş., Kılıçkap E. (2021). Strength of Double-reinforced Adhesive Joints. Materials Testing, 63(2), 176-181.
  • Agnello S., Alessi A., Buscarino G., Piazza A., Maio A., Botta L., Scaffaro R. (2017). Structural and Thermal Stability of Graphene Oxide-Silica Nanoparticles Nanocomposites. Journal of Alloys and Compounds, 695, 2054-2064.
  • Ahmadi Z. (2019). Nanostructured Epoxy Adhesives: A Review. Progress in Organic Coatings, 135, 449-453.
  • Akpinar S. (2013). Effects of Different Curvature Patches on The Strength of Double-Strap Adhesive Joints. The Journal of Adhesion, 89(12), 937-947.
  • Alies M. S. I., Khalil N. Z. (2022). Effect of Alumina/Graphene Hybrid Nano Reinforcement to The Adhesion and Mechanical Properties of Adhesively Bonded Aluminum Alloy with Epoxy. Materials Today: Proceedings, 51, 1437-1443.
  • Atahan M. G., Apalak M. K. (2022). Experimental Investigation of Oblique Impact Behavior of Adhesively Bonded Composite Single-Lap Joints. Applied Composite Materials, 29(3), 1293-1319.
  • Ayatollahi M. R., Nemati Giv A., Razavi S. M. J., Khoramishad H. (2017). Mechanical Properties of Adhesively Single Lap-Bonded Joints Reinforced with Multi-Walled Carbon Nanotubes and Silica Nanoparticles. The Journal of Adhesion, 93(11), 896-913.
  • Bjørgum A., Lapique F., Walmsley J., Redford K. (2003). Anodising as Pre-Treatment for Structural Bonding. International Journal of Adhesion and Adhesives, 23(5), 401-412.
  • Bozkurt Ö. Y., Bulut M., Erkliğ A., Faydh W. A. (2019). Axial and Lateral Buckling Analysis of Fiber Reinforced S-Glass/Epoxy Composites Containing Nano-Clay Particles. Composites Part B: Engineering, 158, 82-91.
  • Bulut M. (2017). Mechanical Characterization of Basalt/Epoxy Composite Laminates Containing Graphene Nanopellets. Composites Part B: Engineering, 122, 71-78.
  • Cakir M. V., Kinay D. (2021). MWCNT, Nano‐Silica, and Nano‐Clay Additives Effects on Adhesion Performance of Dissimilar Materials Bonded Joints. Polymer Composites, 42(11), 5880-5892.
  • Chatterjee S., Nafezarefi F., Tai N. H., Schlagenhauf L., Nüesch F. A., Chu B. T. T. (2012). Size and Synergy Effects of Nanofiller Hybrids İncluding Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites. Carbon, 50(15), 5380-5386.
  • Çakır M. V., Özbek Ö. (2022). Mechanical Performance and Damage Analysis of GNP-Reinforced Adhesively Bonded Joints Under Shear and Bending Loads. The Journal of Adhesion, 99(5), 869-892.
  • EN ISO 10365. (1995). Adhesives–designation of Main Failure Patterns, London: British Standards Institution.
  • Esendemir Ü., Şimşek R., Saraç M. F. (2020). Hibrit Kompozit Yapılarda Nanokil İlavesinin Darbe Davranışına Etkisi. Journal of the Institute of Science and Technology, 10(4): 2831-2839.
  • Gamdani F., Boukhili R., Vadean A. (2022). Fatigue Behavior of Hybrid Multi-Bolted-Bonded Single-Lap Joints in Woven Composite Plates. International Journal of Fatigue, 158, 106738.
  • Ghadge R. R., Prakash S., Ganorkar S. A. (2021). Experimental Investigations on Fatigue Life Enhancement of Composite (E-Glass/Epoxy) Single Lap Joint with Graphene Oxide Modified Adhesive. Materials Research Express, 8(2), 025202.
  • Gupta S. K., Shukla D. K., Kaustubh Ravindra D. (2021). Effect of Nanoalumina in Epoxy Adhesive on Lap Shear Strength and Fracture Toughness of Aluminium Joints. The Journal of Adhesion, 97(2), 117-139.
  • Gültekin K., Akpinar S., Gürses A., Eroglu Z., Cam S., Akbulut H., Keskin Z., Ozel A. (2016). The Effects of Graphene Nanostructure Reinforcement on the Adhesive Method and the Graphene Reinforcement Ratio on the Failure Load in Adhesively Bonded Joints. Composites Part B: Engineering, 98, 362-369.
  • Jojibabu P., Zhang Y. X., Rider A. N., Wang J., Prusty B. G. (2019). Synergetic Effects of Carbon Nanotubes and Triblock Copolymer on The Lap Shear Strength of Epoxy Adhesive Joints. Composites Part B: Engineering, 178, 107457.
  • Kanar B., Akpinar S., Akpinar I. A., Akbulut H., Ozel A. (2018). The Fracture Behaviour of Nanostructure Added Adhesives Under Ambient Temperature and Thermal Cyclic Conditions. Theoretical and Applied Fracture Mechanics, 97, 120-130.
  • Khoramishad H., Ebrahimijamal M., Fasihi M. (2017). The Effect of Graphene Oxide Nano‐Platelets on Fracture Behavior of Adhesively Bonded Joints. Fatigue & Fracture of Engineering Materials & Structures, 40(11), 1905-1916.
  • Khoramishad H. A., Hosseini Vafa S. M. B. (2018). Effect of Aligning Graphene Oxide Nanoplatelets Using Direct Current Electric Field on Fracture Behaviour of Adhesives. Fatigue & Fracture of Engineering Materials & Structures, 41(12), 2514-2529.
  • Kumar K. S., Selvakumar P., Jagadeeswari R., Dharmaraj M., Uvanshankar K. R., Yogeswaran B. (2021). Stress Analysis of Riveted and Bolted Joints Using Analytical and Experimental Approach. Materials Today: Proceedings, 42, 1091-1099.
  • Lee C., Wei X., Kysar J. W., Hone J. (2008). Measurement of The Elastic Properties and İntrinsic Strength of Monolayer Graphene. Science, 321(5887), 385-388.
  • NajiMehr H., Shariati M., Zamani P., Da Silva L. F., Ghahremani Moghadam D. (2022). Investigating on The Influence of Multi‐Walled Carbon Nanotube and Graphene Nanoplatelet Additives on Residual Strength of Bonded Joints Subjected to Partial Fatigue Loading. Journal of Applied Polymer Science, 139(18), 52069.
  • Ozcan U. E., Karabork F., Yazman S., Akdemir A. (2019). Effect of Silica/Graphene Nanohybrid Particles on The Mechanical Properties of Epoxy Coatings. Arabian Journal for Science and Engineering, 44(6), 5723-5731.
  • Özbek Ö., Çakır M. V. (2022). MWCNT and Nano-Silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP Plates. International Journal of Adhesion and Adhesives, 117, 103159.
  • Özbek Ö, Çakır MV, Doğan NF, 2022. Effect of Halloysite Nanotube Additive on Shear Strength in Al-GFRP Single Lap Adhesive Joint. Journal of Materials and Mechatronics: A, 3(1): 117-128.
  • Quan D., Pearson R. A., Ivankovic A. (2018). Interaction of Toughening Mechanisms in Ternary Nanocomposites. Polymer Composites, 39(10), 3482-3496.
  • Rao Q., Huang H., Ouyang Z., Peng X. (2020). Synergy Effects of Multi-Walled Carbon Nanotube and Graphene Nanoplate Filled Epoxy Adhesive on The Shear Properties of Unidirectional Composite Bonded Joints. Polymer Testing, 82, 106299.
  • Razavi S. M. J., Ayatollahi M. R., Giv A. N., Khoramishad H. (2018). Single Lap Joints Bonded with Structural Adhesives Reinforced with A Mixture of Silica Nanoparticles and Multi Walled Carbon Nanotubes. International Journal of Adhesion and Adhesives, 80, 76-86.
  • Sadigh M. A. S., Marami G. (2016). Investigating The Effects of Reduced Graphene Oxide Additive on The Tensile Strength of Adhesively Bonded Joints at Different Extension Rates. Materials & Design, 92, 36-43.
  • Saraç İ., Adin H., Temiz Ş. (2019). Investigation of The Effect of Use of Nano-Al2O3, Nano-Tio2 and Nano-Sio2 Powders on Strength of Single Lap Joints Bonded with Epoxy Adhesive. Composites Part B: Engineering, 166, 472-482.
  • Scaffaro R., Maio A. (2017). A Green Method to Prepare Nanosilica Modified Graphene Oxide to Inhibit Nanoparticles Re-Aggregation During Melt Processing. Chemical Engineering Journal, 308, 1034-1047.
  • Silvestre J., Silvestre N., De Brito J. (2015). An Overview on The Improvement of Mechanical Properties of Ceramics Nanocomposites. Journal of Nanomaterials, 3, 106494.
  • Soltannia B., Taheri F. (2022). Influence of Nano-Reinforcement on The Mechanical Behavior of Adhesively Bonded Single-Lap Joints Subjected to Static, Quasi-Static, and Impact Loading. Journal of Adhesion Science and Technology, 29(5), 424-442.
  • Soydan A. M., Akel M., Akdeniz R. (2019). Nano Bor İçerikli Yeni Nesil PEMFC Nanokompozit Membranların Üretimi ve Karakterizasyonu. Journal of the Institute of Science and Technology, 9(1), 20-29.
  • Standard ASTM D5868-01. (2008). Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding, ASTM International, West Conshohocken, PA.
  • Uzun M., Akçadağ B. (2022). Bonding of Cycloid, Epicycloid, Involute, 450 Curved Surfaces and Investigation of Mechanical Properties by Finite Element Method. Journal of the University Institute of Science and Technology, 12(2), 990-1002.
  • Wang D., Dong Y., Liu L., Zhu M., Wang H., Liu C. (2022). Effect of Pulsed Laser and Laser-arc Hybrid on Aluminum/Steel Riveting-welding Hybrid Bonding Technology. Journal of Materials Research and Technology, 17, 1043-1053.
  • Wu S., Ladani R. B., Zhang J., Bafekrpour E., Ghorbani K., Mouritz A. P., Kinloch A. J., Wang C. H. (2015). Aligning Multilayer Graphene Flakes with An External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites. Carbon, 94, 607-618.
  • Zamani P., Alaei M. H., da Silva L. F., Ghahremani‐Moghadam D. (2022). On The Static and Fatigue Life of Nano‐Reinforced Al‐GFRP Bonded Joints Under Different Dispersion Treatments. Fatigue & Fracture of Engineering Materials & Structures, 45(4), 1088-1110.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Özkan Özbek 0000-0003-1532-4262

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 1 Aralık 2022
Kabul Tarihi 27 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Özbek, Ö. (2023). Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Journal of the Institute of Science and Technology, 13(3), 1970-1982. https://doi.org/10.21597/jist.1212972
AMA Özbek Ö. Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1970-1982. doi:10.21597/jist.1212972
Chicago Özbek, Özkan. “Shear and Fracture Characteristics of Nano-Silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1970-82. https://doi.org/10.21597/jist.1212972.
EndNote Özbek Ö (01 Eylül 2023) Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Journal of the Institute of Science and Technology 13 3 1970–1982.
IEEE Ö. Özbek, “Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1970–1982, 2023, doi: 10.21597/jist.1212972.
ISNAD Özbek, Özkan. “Shear and Fracture Characteristics of Nano-Silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1970-1982. https://doi.org/10.21597/jist.1212972.
JAMA Özbek Ö. Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1970–1982.
MLA Özbek, Özkan. “Shear and Fracture Characteristics of Nano-Silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1970-82, doi:10.21597/jist.1212972.
Vancouver Özbek Ö. Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1970-82.