Araştırma Makalesi
BibTex RIS Kaynak Göster

Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi

Yıl 2023, , 432 - 447, 01.03.2023
https://doi.org/10.21597/jist.1219411

Öz

Bu çalışmada, birlikte çöktürme ve sol-jel yöntemleri ile hazırlanan kobalt ferrit
nanopartiküllerin yapısal ve fotokatalitik özellikleri üzerinde sentez yönteminin etkisine ilişkin
bir araştırma sunulmaktadır. Çöktürücü maddeler olarak sodyum hidroksit, potasyum hidroksit
ve amonyak, jelleştirici madde olarak sitrik asit kullanılmıştır. Elde edilen kobalt ferrit
fotokatalizörlerinin karşılaştırmalı özellikleri X-ışını kırınımı (XRD), Fourier dönüşümü
kızılötesi (FTIR) spektroskopisi, taramalı elektron mikroskobu (SEM) ve enerji dağılımlı X Işını
analizi (EDX) karakterizasyon teknikleri ile incelenmiştir. Numunelerin fotokatalitik aktiviteleri,
görünür bölge ışıması altında Kristal Viyolet (KV) ve Rhodamin B (RhB)'nin fotobozunması ile
değerlendirildi. Birlikte çöktürme yöntemiyle ve çöktürücü madde olarak amonyak kullanılarak
sentezlenen kobalt ferrit, diğer örneklerle karşılaştırıldığında daha üstün fotokatalitik aktivite
sergiledi. Amonyak çöktürücüsü ile sentezlenen kobalt ferrit, fotokatalitik bozunma verimleri
KV ve RhB için, 40 dakika ve 120 dakika sürelerden sonra sırasıyla %100 ve %91.2 olarak
belirlendi. Boyaların fotobozunmasının yalancı birinci dereceden kinetik modeli takip ettiği
bulundu. Amonyak çöktürücüsü ile sentezlenen kobalt ferrit, yalancı birinci dereceden hız
sabitleri KV ve RhB için sırasıyla 0.0847 ve 0.0205/dak olarak belirlendi.

Kaynakça

  • Andhare D.D., Patade S.R., Kounsalye J.S., Jadhav, K.M., (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method Physica B: Physics of Condensed Matter 583, 412051.
  • Anusa, R., Ravıchandran, C., Rajendran, T.V., Arularasu, M.V., Sıvakumar, E.K.T. (2019). Comparative Investigation of Cobalt Ferrite (CoFe2O4) and Cadmium Ferrite (CdFe2O4) Nanopartıcles for The Structural, Optıcal Properties and Antibacterial Activity, Digest Journal of Nanomaterials and Biostructures 14(2), 367-374.
  • Bahnemann, W., Muneer, M. and Haque, M.M., (2007). Titanium Dioxide-Mediated Photocatalysed Degradation of Few Selected Organic Pollutants in Aqueous Suspensions, Catalysis Today, 124, 133-148.
  • Balavijayalakshmi, J., Suriyanarayanan, N., Jayapraksah, R., (2012). Influence of copper on the magnetic properties of cobalt ferrite nano particles, Materials Letters 81, 52-54.
  • Barani, M., Rahdar, A., Mukhtar, M., Razzaq, S., Qindeel, M., Olam, S. A. H., Paiva-Santos A.C., Ajalli, N., Sargazi S., Balakrishnan D., Gupta A.K., Pandey, S. (2022). Recent application of cobalt ferrite nanoparticles as a theranostic agent. Materials Today Chemistry, 26, 101131.
  • Barapati, S., Mucherla R., Gade R., Somaiah, P.V. (2022). Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study, Journal of Materials Science: Materials in Electronics 33, 25139-25152.
  • Çağlar, B., Güner, E. K., Keles, K., Özdokur, K. V., Cubuk, O., Coldur, F., Çağlar, S., Topçu C., Tabak, A. (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122-136.
  • Çağlar, B., Guner, E. K., Özdokur, K. V., Özdemir, A. O., İçer, F., Caglar, S., Doğan B., Beşer, B.M., Çırak Ç., Tabak, A., Ersoy, S. (2021a). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • Çağlar, B., Guner, E. K., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., ... & Çırak, Ç. (2021b). Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes. Journal of Alloys and Compounds, 885, 160964.
  • Dehvari M., Babaei A.A., Esmaeili S., (2023). Amplification of oxidative elimination of atrazine by Ultrasound/ Ultraviolet–assisted Sono/Photocatalyst using a spinel cobalt ferrite–anchored MWCNT as peroxymonosulfate activator, Journal of Photochemistry & Photobiology, A: Chemistry 437, 114452.
  • Dutta, S., Gupta, B., Srivastava, S.K., Gupta, A.K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Materials Advances, 2, 4497-4531. Gao W., Ran C., Wang M., Li L., Su Z., Yao X., (2016). The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system, Phys. Chem. Chem. Phys. 18, 18219-18226.
  • Hasan, I., Walia, S., Alharbi K.H., Khanjer, A.M., Alsalme, A., Khan, R.A. (2020) Multi-walled carbon nanotube coupled β-cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet, Journal of Molecular Liquids 317,114216-114226.
  • Jabbar, R., Sabeeh, S.H., Hameed A.M. (2020). Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials 494, 165726.
  • Jain R., Kumar S., Meena S.K., (2022). Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles, AIP Advances 12, 095109.
  • Jeseentharani, V., George, M., Jeyaraj, B., Dayalan, A., Nagaraja, K.S. (2013). Synthesis of metal ferrite (MFe2O4, M=Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials, Journal of Experimental Nanoscience, 8(3), 358-370.
  • Joseph, C.G., Taufiq-Yap, Y.H., Musta, B., Sarjadi, M.S., Elilarasi, L., (2021). Application of Plasmonic Metal Nanoparticles in TiO2-SiO2 Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper, Frontiers in Chemistry 8, 568063.
  • Karakaş, I.H., Karcıoğlu Karakaş, Z. (2022). The effects of heat treatment temperatures on photocatalytic activity of cobalt ferrite nanoparticles synthesised by microwave‐assisted combustion method, Coloration Technology.
  • Keleş Güner, E., İçer, F., Özdemir, A., Çağlar, B. (2021). Farklı ışık kaynakları altında kristal viyole boyar maddesinin kaolin-BiFeO3 nanokompozit üzerinde fotobozunması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 815-827.
  • Khanı A., Sohrabı M.R., Khosravı M., Davallo, M., (2013). Enhancing purification of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkısh Journal of Engineering and Environmental Sciences 37, 91-99.
  • Kızıltaş, H., Aydın, Ö. (2022). Removal of Orange G dye using peanut shells activated carbon: a green synthesis approach. International Journal of Environmental Analytical Chemistry, 1-21.
  • Kirankumar, V. S., & Sumathi, S. (2018). Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 29(10), 8738-8746. Kurian, M., Nair, D.S., (2016). Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods, Journal of Saudi Chemical Society 20, 517–522.
  • Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref A., Iqbal M., Nazir, A. (2021). The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method. Zeitschrift für Physikalische Chemie, 235(10), 1279-1296.
  • Manikandan A., Vijaya J.J., Sundararajan M., Meganathan C., Kennedy L.J., Bououdina M., (2013). Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method, Superlattices and Microstructures 64, 118-131.
  • Mmelesi, O. K., Masunga, N., Kuvarega, A., Nkambule, T. T., Mamba, B. B., Kefeni, K. K. (2021). Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Materials Science in Semiconductor Processing, 123, 105523.
  • Montahaei, R., Emamian, H. R. (2022). The impact of microwave-assisted sintering on fabrication of cobalt ferrite nanostructure foams for gas-sensing. Ceramics International.
  • Moreno, M., Mazur, L. P., Weschenfelder, S. E., Regis, R. J., de Souza, R. A., Marinho, B. A., Silva A., de Souza S.M.A. Guelli U., de Souza, A. A. U. (2022). Water and wastewater treatment by micellar enhanced ultrafiltration–A critical review. Journal of Water Process Engineering, 46, 102574.
  • Munir M.A., Naz M.Y., Shukrullah S., Ansar M.T., Abbas G., Makhlouf M.M, (2022). Microwave plasma treatment of NiCuZn ferrite nanoparticles: a novel approach of improving opto-physical and magnetic properties. Applied Physics A, 128, 345.
  • Naderi A., Firooz M.H., Gharibzadeh F., Giannakis S., Ahmadi M., Kalantary R.R., Kakavandi B., (2023). Anchoring ZnO on spinel cobalt ferrite for highly synergic sono-photo-catalytic, surfactant-assisted PAH degradation from soil washing solutions, Journal of Environmental Management 326, 116584.
  • Nagajyothi, P.C., Veeranjaneya Reddy, L., Devarayapalli, K.C., Prabhakar Vattikuti, S.V., Wee, Y.J., Shim, J. (2021). Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite, Journal of Cluster Science 32,711-718.
  • Nguyen, V.Q., Mady, A.H., Mahadadalkar, M.A., Baynosa, M.L., Kumar, D.R., Rabie, A.M., Lee, J., Kim, W.K., Shim, J.J., (2022). Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light, Journal of Colloid and Interface Science 606, 337-352.
  • Peng, Y., Tang, H., Yao, B., Gao, X., Yang, X., & Zhou, Y. (2021). Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 414, 128800. Phuruangrat A., Buapoon S., Bunluesak, T., Suebsom, P., Wannapop, S., Thongtem, T., Thongtem S., (2022). Hydrothermal preparation of Au-doped Bi2WO6 nanoplates for enhanced visible-light-driven photocatalytic degradation of rhodamine B, Solid State Sciences 128, 106881.
  • Qamar, M.A., Javed, M., Shahid, S., Sher, M. (2022). Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Materials Research Bulletin 147, 111630.
  • Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., Wang Z., Zhao Y., Tian Q., Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486.
  • Ranga R., Kumar K., Kumar A., (2023). Morphology, structural and magnetic study of superparamagnetic Mg0.5Zn0.5Fe2-xLaxO4 (0 ≤ x ≤ 0.1) ferrite nanoparticles synthesized by chemical coprecipitation method, Ceramics International 49, 2956–2966.
  • Rashid J., Saleem S., Awan S.U., Iqbal, A., Kumar R., Barakat M.A., Arshad, M. Zaheer, M., Rafique M., Awad, M., (2018). Stabilized fabrication of anatase-TiO2/FeS2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue, RSC Adv., 8, 11935.
  • Rashid M., Hassan W., Aadil M., Somaily H.H., Mahdi N.M., Lataef R., Taki A.G., Srithilat K., Baamer D.F., Albukhari S.M., Salam M.A., llyas A., (2023). Solar-light-driven and magnetically recoverable doped nano-ferrite: An ideal photocatalyst for water purification applications, Optical Materials 135, 113192.
  • Revathi, J., Abel, M. J., Archana, V., Sumithra, T., Thiruneelakandan, R., Prince J.J., (2020a). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 587, 412136.
  • Revathi, J., Abel, M. J., Pearline, C. L., Sumithra, T., Inbaraj, P.F.H. (2020b). Influence of Zn2+ in CoFe2O4 nanoparticles on its photocatalytic activity under solar light irradiation. Inorganic Chemistry Communications, 121, 108186.
  • Parhizkar, J., & Habibi, M. H. (2019). Investigation and Comparison of Cobalt ferrite composite nanoparticles with individual Iron oxide and Cobalt oxide nanoparticles in azo dyes removal. Journal of Water and Environmental Nanotechnology, 4(1), 17-30.
  • Sarmah S., Patra K.P., Maji P.K., Ravi S., Bora T., (2023). A comparative study on the structural, magnetic and dielectric properties of magnesium substituted cobalt ferrites, Ceramics International 49, 1444-1463. Shakila, M., Inayata, U., Arshadb, M.I., Nabia, G., Khalida, N.R., Tariqc, N.H., Shahd, A., Iqbal, M.Z. (2020). Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites, Ceramics International 46, 7767-7773.
  • Sharma, G., Khosla, A., Kumar, A., Kaushal, N., Sharma, S., Naushad, M., Vo, D.V.N., Igbal, J., Stadler, F.J. (2022). A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 289, 133100.
  • Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Nge H.Y., Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1), 70-87.
  • Sonu, K., Puttaiah, S.H., Raghavan, V.S., Gorthi, S.S., (2021). Photocatalytic degradation of MB by TiO2: Studies on recycle and reuse of photocatalyst and treated water for seed germination, Environmental Science and Pollution Research 28,48742-48753.
  • Soufı, A., Hajjaouı, H., Elmoubarkı, R., Abdennourı, M., Qourzal, S., Barka, N. (2021). Spinel ferrites nanoparticles: synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants–a review. Applied Surface Science Advances, 6, 100145.
  • Sun M., Han X., Chen, S., (2019). Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation, Materials Science in Semiconductor Processing 91, 367-376.
  • Tran, C.V., La, D.D., Thi Hoai, P.N., Ninh, H.D., Thi Hong, P.N., Vu, T.H.T., Nadda, A.K., Nguyen, X.C., Nguyen, D.D., Ngo, H.H., (2021). New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater Journal of Hazardous Materials 420, 126636.
  • Udhaya P.A., Ahmad A., Meena M., Queen M.A.J., Aravind M., Velusamy P., Almutairi T.M., Mohammed A.A.A., Ali S., (2023). Copper Ferrite nanoparticles synthesised using a novel green synthesis route: Structural development and photocatalytic activity, Journal of Molecular Structure 1277, 134807.
  • Vinosha, P. A., Manikandan, A., Preetha, A. C., Dinesh, A., Slimani, Y., Almessiere, M. A., Baykal A., Xavier B., Nirmala, G. (2021). Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. Journal of Superconductivity and Novel Magnetism, 34(4), 995-1018.
  • Vural, S., Alphan, A., Köytepe, S., Seçkin, T., (2018). PVP-Aşılanmış NiFe2O4 Nano Parçacıklarının Yüzey Polimerizasyonu Tekniği ile Sentezi, Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, 6, 2, 188-197. Wei, F., Liao, D., Lin, Y., Hu, C., Ju, J., Chen, Y., & Feng, D. (2021). Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode. Separation and Purification Technology, 258, 118056.
  • Yahya, M. D., Obayomi, K. S., Abdulkadir, M. B., Iyaka, Y. A., & Olugbenga, A. G. (2020). Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering, 13(3), 202-213.
  • Yao, L., Yang, H., Chen, Z., Qiu, M., Hu, B., Wang, X. (2021). Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere, 273, 128576.
  • Yoon J.W., Baek M.H., Hong J.S., Lee C.Y., Suh J.K., (2012). Photocatalytic degradation of azo dye using TiO2 supported on spherical activated carbon, Korean Journal of Chemical Engineering 29 (12), 1722-1729.
  • Zhan, Y., Guan, X., Ren, E., Lin, S., Lan, J. (2019). Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofbrous mats for dye removal. Journal of Polymer Research 26,1-11.

Synthesis, Characterization and Photocatalysis Applications of Cobalt Ferrite Nanoparticles: The Effect of Different Precipitating Agents and Methods

Yıl 2023, , 432 - 447, 01.03.2023
https://doi.org/10.21597/jist.1219411

Öz

In this study, a research on the effect of synthesis method on the structural and photocatalytic
properties of cobalt ferrite nanoparticles prepared by co-precipitation and sol-gel methods is
presented. Sodium hydroxide, potassium hydroxide and ammonia were used as precipitating
agents and citric acid was used as gelling agent. The comparative properties of the obtained
cobalt ferrite photocatalysts were investigated by X-ray diffraction (XRD), Fourier transform
infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray
analysis (EDX) characterization techniques. The photocatalytic activities of the samples were
evaluated by photodegradation of Crystal Violet (KV) and Rhodamine B (RhB) under visible
irradiation. cobalt ferrite synthesized by co-precipitation method and using ammonia as the
precipitant showed superior photocatalytic activity compared to other samples. Photocatalytic
degradation efficiencies of cobalt ferrite synthesized with ammonia precipitator were determined
as 100% and 91.2% for KV and RhB after 40 minutes and 120 minutes, respectively. The
photodegradation of the dyes was found to follow the pseudo-first-order kinetic model. The
pseudo-first order rate constants of cobalt ferrite synthesized with ammonia precipitator were
determined as 0.0847 ve 0.0205/min for KV and RhB, respectively

Kaynakça

  • Andhare D.D., Patade S.R., Kounsalye J.S., Jadhav, K.M., (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method Physica B: Physics of Condensed Matter 583, 412051.
  • Anusa, R., Ravıchandran, C., Rajendran, T.V., Arularasu, M.V., Sıvakumar, E.K.T. (2019). Comparative Investigation of Cobalt Ferrite (CoFe2O4) and Cadmium Ferrite (CdFe2O4) Nanopartıcles for The Structural, Optıcal Properties and Antibacterial Activity, Digest Journal of Nanomaterials and Biostructures 14(2), 367-374.
  • Bahnemann, W., Muneer, M. and Haque, M.M., (2007). Titanium Dioxide-Mediated Photocatalysed Degradation of Few Selected Organic Pollutants in Aqueous Suspensions, Catalysis Today, 124, 133-148.
  • Balavijayalakshmi, J., Suriyanarayanan, N., Jayapraksah, R., (2012). Influence of copper on the magnetic properties of cobalt ferrite nano particles, Materials Letters 81, 52-54.
  • Barani, M., Rahdar, A., Mukhtar, M., Razzaq, S., Qindeel, M., Olam, S. A. H., Paiva-Santos A.C., Ajalli, N., Sargazi S., Balakrishnan D., Gupta A.K., Pandey, S. (2022). Recent application of cobalt ferrite nanoparticles as a theranostic agent. Materials Today Chemistry, 26, 101131.
  • Barapati, S., Mucherla R., Gade R., Somaiah, P.V. (2022). Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study, Journal of Materials Science: Materials in Electronics 33, 25139-25152.
  • Çağlar, B., Güner, E. K., Keles, K., Özdokur, K. V., Cubuk, O., Coldur, F., Çağlar, S., Topçu C., Tabak, A. (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122-136.
  • Çağlar, B., Guner, E. K., Özdokur, K. V., Özdemir, A. O., İçer, F., Caglar, S., Doğan B., Beşer, B.M., Çırak Ç., Tabak, A., Ersoy, S. (2021a). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • Çağlar, B., Guner, E. K., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., ... & Çırak, Ç. (2021b). Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes. Journal of Alloys and Compounds, 885, 160964.
  • Dehvari M., Babaei A.A., Esmaeili S., (2023). Amplification of oxidative elimination of atrazine by Ultrasound/ Ultraviolet–assisted Sono/Photocatalyst using a spinel cobalt ferrite–anchored MWCNT as peroxymonosulfate activator, Journal of Photochemistry & Photobiology, A: Chemistry 437, 114452.
  • Dutta, S., Gupta, B., Srivastava, S.K., Gupta, A.K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Materials Advances, 2, 4497-4531. Gao W., Ran C., Wang M., Li L., Su Z., Yao X., (2016). The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system, Phys. Chem. Chem. Phys. 18, 18219-18226.
  • Hasan, I., Walia, S., Alharbi K.H., Khanjer, A.M., Alsalme, A., Khan, R.A. (2020) Multi-walled carbon nanotube coupled β-cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet, Journal of Molecular Liquids 317,114216-114226.
  • Jabbar, R., Sabeeh, S.H., Hameed A.M. (2020). Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials 494, 165726.
  • Jain R., Kumar S., Meena S.K., (2022). Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles, AIP Advances 12, 095109.
  • Jeseentharani, V., George, M., Jeyaraj, B., Dayalan, A., Nagaraja, K.S. (2013). Synthesis of metal ferrite (MFe2O4, M=Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials, Journal of Experimental Nanoscience, 8(3), 358-370.
  • Joseph, C.G., Taufiq-Yap, Y.H., Musta, B., Sarjadi, M.S., Elilarasi, L., (2021). Application of Plasmonic Metal Nanoparticles in TiO2-SiO2 Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper, Frontiers in Chemistry 8, 568063.
  • Karakaş, I.H., Karcıoğlu Karakaş, Z. (2022). The effects of heat treatment temperatures on photocatalytic activity of cobalt ferrite nanoparticles synthesised by microwave‐assisted combustion method, Coloration Technology.
  • Keleş Güner, E., İçer, F., Özdemir, A., Çağlar, B. (2021). Farklı ışık kaynakları altında kristal viyole boyar maddesinin kaolin-BiFeO3 nanokompozit üzerinde fotobozunması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 815-827.
  • Khanı A., Sohrabı M.R., Khosravı M., Davallo, M., (2013). Enhancing purification of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkısh Journal of Engineering and Environmental Sciences 37, 91-99.
  • Kızıltaş, H., Aydın, Ö. (2022). Removal of Orange G dye using peanut shells activated carbon: a green synthesis approach. International Journal of Environmental Analytical Chemistry, 1-21.
  • Kirankumar, V. S., & Sumathi, S. (2018). Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 29(10), 8738-8746. Kurian, M., Nair, D.S., (2016). Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods, Journal of Saudi Chemical Society 20, 517–522.
  • Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref A., Iqbal M., Nazir, A. (2021). The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method. Zeitschrift für Physikalische Chemie, 235(10), 1279-1296.
  • Manikandan A., Vijaya J.J., Sundararajan M., Meganathan C., Kennedy L.J., Bououdina M., (2013). Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method, Superlattices and Microstructures 64, 118-131.
  • Mmelesi, O. K., Masunga, N., Kuvarega, A., Nkambule, T. T., Mamba, B. B., Kefeni, K. K. (2021). Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Materials Science in Semiconductor Processing, 123, 105523.
  • Montahaei, R., Emamian, H. R. (2022). The impact of microwave-assisted sintering on fabrication of cobalt ferrite nanostructure foams for gas-sensing. Ceramics International.
  • Moreno, M., Mazur, L. P., Weschenfelder, S. E., Regis, R. J., de Souza, R. A., Marinho, B. A., Silva A., de Souza S.M.A. Guelli U., de Souza, A. A. U. (2022). Water and wastewater treatment by micellar enhanced ultrafiltration–A critical review. Journal of Water Process Engineering, 46, 102574.
  • Munir M.A., Naz M.Y., Shukrullah S., Ansar M.T., Abbas G., Makhlouf M.M, (2022). Microwave plasma treatment of NiCuZn ferrite nanoparticles: a novel approach of improving opto-physical and magnetic properties. Applied Physics A, 128, 345.
  • Naderi A., Firooz M.H., Gharibzadeh F., Giannakis S., Ahmadi M., Kalantary R.R., Kakavandi B., (2023). Anchoring ZnO on spinel cobalt ferrite for highly synergic sono-photo-catalytic, surfactant-assisted PAH degradation from soil washing solutions, Journal of Environmental Management 326, 116584.
  • Nagajyothi, P.C., Veeranjaneya Reddy, L., Devarayapalli, K.C., Prabhakar Vattikuti, S.V., Wee, Y.J., Shim, J. (2021). Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite, Journal of Cluster Science 32,711-718.
  • Nguyen, V.Q., Mady, A.H., Mahadadalkar, M.A., Baynosa, M.L., Kumar, D.R., Rabie, A.M., Lee, J., Kim, W.K., Shim, J.J., (2022). Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light, Journal of Colloid and Interface Science 606, 337-352.
  • Peng, Y., Tang, H., Yao, B., Gao, X., Yang, X., & Zhou, Y. (2021). Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 414, 128800. Phuruangrat A., Buapoon S., Bunluesak, T., Suebsom, P., Wannapop, S., Thongtem, T., Thongtem S., (2022). Hydrothermal preparation of Au-doped Bi2WO6 nanoplates for enhanced visible-light-driven photocatalytic degradation of rhodamine B, Solid State Sciences 128, 106881.
  • Qamar, M.A., Javed, M., Shahid, S., Sher, M. (2022). Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Materials Research Bulletin 147, 111630.
  • Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., Wang Z., Zhao Y., Tian Q., Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486.
  • Ranga R., Kumar K., Kumar A., (2023). Morphology, structural and magnetic study of superparamagnetic Mg0.5Zn0.5Fe2-xLaxO4 (0 ≤ x ≤ 0.1) ferrite nanoparticles synthesized by chemical coprecipitation method, Ceramics International 49, 2956–2966.
  • Rashid J., Saleem S., Awan S.U., Iqbal, A., Kumar R., Barakat M.A., Arshad, M. Zaheer, M., Rafique M., Awad, M., (2018). Stabilized fabrication of anatase-TiO2/FeS2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue, RSC Adv., 8, 11935.
  • Rashid M., Hassan W., Aadil M., Somaily H.H., Mahdi N.M., Lataef R., Taki A.G., Srithilat K., Baamer D.F., Albukhari S.M., Salam M.A., llyas A., (2023). Solar-light-driven and magnetically recoverable doped nano-ferrite: An ideal photocatalyst for water purification applications, Optical Materials 135, 113192.
  • Revathi, J., Abel, M. J., Archana, V., Sumithra, T., Thiruneelakandan, R., Prince J.J., (2020a). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 587, 412136.
  • Revathi, J., Abel, M. J., Pearline, C. L., Sumithra, T., Inbaraj, P.F.H. (2020b). Influence of Zn2+ in CoFe2O4 nanoparticles on its photocatalytic activity under solar light irradiation. Inorganic Chemistry Communications, 121, 108186.
  • Parhizkar, J., & Habibi, M. H. (2019). Investigation and Comparison of Cobalt ferrite composite nanoparticles with individual Iron oxide and Cobalt oxide nanoparticles in azo dyes removal. Journal of Water and Environmental Nanotechnology, 4(1), 17-30.
  • Sarmah S., Patra K.P., Maji P.K., Ravi S., Bora T., (2023). A comparative study on the structural, magnetic and dielectric properties of magnesium substituted cobalt ferrites, Ceramics International 49, 1444-1463. Shakila, M., Inayata, U., Arshadb, M.I., Nabia, G., Khalida, N.R., Tariqc, N.H., Shahd, A., Iqbal, M.Z. (2020). Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites, Ceramics International 46, 7767-7773.
  • Sharma, G., Khosla, A., Kumar, A., Kaushal, N., Sharma, S., Naushad, M., Vo, D.V.N., Igbal, J., Stadler, F.J. (2022). A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 289, 133100.
  • Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Nge H.Y., Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1), 70-87.
  • Sonu, K., Puttaiah, S.H., Raghavan, V.S., Gorthi, S.S., (2021). Photocatalytic degradation of MB by TiO2: Studies on recycle and reuse of photocatalyst and treated water for seed germination, Environmental Science and Pollution Research 28,48742-48753.
  • Soufı, A., Hajjaouı, H., Elmoubarkı, R., Abdennourı, M., Qourzal, S., Barka, N. (2021). Spinel ferrites nanoparticles: synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants–a review. Applied Surface Science Advances, 6, 100145.
  • Sun M., Han X., Chen, S., (2019). Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation, Materials Science in Semiconductor Processing 91, 367-376.
  • Tran, C.V., La, D.D., Thi Hoai, P.N., Ninh, H.D., Thi Hong, P.N., Vu, T.H.T., Nadda, A.K., Nguyen, X.C., Nguyen, D.D., Ngo, H.H., (2021). New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater Journal of Hazardous Materials 420, 126636.
  • Udhaya P.A., Ahmad A., Meena M., Queen M.A.J., Aravind M., Velusamy P., Almutairi T.M., Mohammed A.A.A., Ali S., (2023). Copper Ferrite nanoparticles synthesised using a novel green synthesis route: Structural development and photocatalytic activity, Journal of Molecular Structure 1277, 134807.
  • Vinosha, P. A., Manikandan, A., Preetha, A. C., Dinesh, A., Slimani, Y., Almessiere, M. A., Baykal A., Xavier B., Nirmala, G. (2021). Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. Journal of Superconductivity and Novel Magnetism, 34(4), 995-1018.
  • Vural, S., Alphan, A., Köytepe, S., Seçkin, T., (2018). PVP-Aşılanmış NiFe2O4 Nano Parçacıklarının Yüzey Polimerizasyonu Tekniği ile Sentezi, Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, 6, 2, 188-197. Wei, F., Liao, D., Lin, Y., Hu, C., Ju, J., Chen, Y., & Feng, D. (2021). Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode. Separation and Purification Technology, 258, 118056.
  • Yahya, M. D., Obayomi, K. S., Abdulkadir, M. B., Iyaka, Y. A., & Olugbenga, A. G. (2020). Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering, 13(3), 202-213.
  • Yao, L., Yang, H., Chen, Z., Qiu, M., Hu, B., Wang, X. (2021). Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere, 273, 128576.
  • Yoon J.W., Baek M.H., Hong J.S., Lee C.Y., Suh J.K., (2012). Photocatalytic degradation of azo dye using TiO2 supported on spherical activated carbon, Korean Journal of Chemical Engineering 29 (12), 1722-1729.
  • Zhan, Y., Guan, X., Ren, E., Lin, S., Lan, J. (2019). Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofbrous mats for dye removal. Journal of Polymer Research 26,1-11.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Eda Keleş Güner 0000-0002-4421-1315

Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 15 Aralık 2022
Kabul Tarihi 31 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Keleş Güner, E. (2023). Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi. Journal of the Institute of Science and Technology, 13(1), 432-447. https://doi.org/10.21597/jist.1219411
AMA Keleş Güner E. Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2023;13(1):432-447. doi:10.21597/jist.1219411
Chicago Keleş Güner, Eda. “Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu Ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin Ve Yöntemlerin Etkisi”. Journal of the Institute of Science and Technology 13, sy. 1 (Mart 2023): 432-47. https://doi.org/10.21597/jist.1219411.
EndNote Keleş Güner E (01 Mart 2023) Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi. Journal of the Institute of Science and Technology 13 1 432–447.
IEEE E. Keleş Güner, “Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 1, ss. 432–447, 2023, doi: 10.21597/jist.1219411.
ISNAD Keleş Güner, Eda. “Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu Ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin Ve Yöntemlerin Etkisi”. Journal of the Institute of Science and Technology 13/1 (Mart 2023), 432-447. https://doi.org/10.21597/jist.1219411.
JAMA Keleş Güner E. Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:432–447.
MLA Keleş Güner, Eda. “Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu Ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin Ve Yöntemlerin Etkisi”. Journal of the Institute of Science and Technology, c. 13, sy. 1, 2023, ss. 432-47, doi:10.21597/jist.1219411.
Vancouver Keleş Güner E. Kobalt Ferrit Nanoparçacıkların Sentezi, Karakterizasyonu ve Fotokataliz Uygulamaları:Farklı Çöktürücü Maddelerin ve Yöntemlerin Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):432-47.