Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study of Photon Interaction Parameters for Some Stainless Steel Alloys

Yıl 2023, , 1676 - 1685, 01.09.2023
https://doi.org/10.21597/jist.1292270

Öz

In this work, we investigated the effective atom number, the effective electron density, the mean free path, the tenth-value layer, the half-value layer, and the mass attenuation coefficient for some stainless steels: AISI 302, AISI 303, AISI 304, AISI 304L, AISI 310, AISI 316, AISI 321, and AISI 410. The mass attenuation coefficients were determined using the WinXCom computer program in the energy region 1keV- 100 GeV. The effective atom number and effective electron density have been calculated using two different methods, the direct method, and the interpolation method. The results reveal that the values of effective atomic numbers and effective electron numbers are greatly influenced by the atomic number of elements in the alloy and the interaction photon energy. The effective atom numbers grew as the atomic number of the constituents in the alloys increased. The effective atomic number and effective electron density values for all steels were found to have the highest values at 0–0.1 MeV energy and the lowest values in the 0.5–6 MeV energy range. The shielding properties of the steels produced close results, but AISI 304L provided the best protection while AISI 410 provided the least. The results obtained with both methods were also compared. The result of the present study may provide new and helpful knowledge about stainless steel for gamma-ray shielding applications.

Kaynakça

  • Abdel-latif M. A., & Kassab, M. M. (2022). Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys. Applied Radiation and Isotopes , 186, 110263.
  • Alım, B., Özpolat, Ö. F., Şakar, E., Han, İ., Arslan, İ., Singh, V., & Demir, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry, 194, 110009.
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653.
  • Büyükyıldız, M. (2017). Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. Sakarya University Journal of Science, 21(3), 314-323.
  • de Bellefon, G. M., Robertson, I., Allen, T., van Duysen, J.-C., & Sridharan, K. (2019). Radiation-resistant nanotwinned austenitic stainless steel. Scripta Materialia, 159, 123-127.
  • Esfandiari, M., Shirmardi, S., & Medhat, M. (2014). Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data. Radiation Physics and Chemistry, 99, 30-36.
  • Gan, B., Liu, S., He, Z., Chen, F., Niu, H., Cheng, J., . . . Yu, B. (2021). Research Progress of Metal-Based Shielding Materials for Neutron and Gamma Rays. Acta Metallurgica Sinica, 34(12), 1609-1617.
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654.
  • Gowthaman, P., Jeyakumar, S., & Saravanan, B. (2020). Machinability and tool wear mechanism of Duplex stainless steel–A review. Materials Today: Proceedings, 26, 1423-1429.
  • Gunoglu, K., Özkavak, H. V., & Akkurt, İ. (2021). Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: Experimental, XCOM and Phy-X/PSD database software. Materials Today Communications, 29, 102793.
  • Hine, G. J. (1952). The effective atomic numbers of materials for various gamma ray processes. Phys. Rev., 85, 725.
  • Hu, S., Mao, Y., Liu, X., Han, E.-H., & Hänninen, H. (2020). Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging. Corrosion Science, 166, 108420.
  • Kahraman, N., Gülenç, B., & Akça, H. (2002). Ark kaynak yöntemi ile birleştirilen ostenitik paslanmaz çelik ile düşük karbonlu çeliğin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17(2).
  • Kiran, K., Ravindraswami, K., Eshwarappa, K., & Somashekarappa, H. (2015). Effective atomic number of selected construction materials using gamma backscattering technique. Annals of Nuclear Energy, 85, 1077-1084.
  • Kore, P. S., Pawar, P. P., & Selvam, T. P. (2016). Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry. Radiation Physics and Chemistry, 119, 74-79.
  • Levet, A., Kavaz, E., & Özdemir, Y. (2020). An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. Journal of Alloys and Compounds, 819, 152946.
  • Levet, A., & Özdemir, Y. (2017). Determination of effective atomic numbers, effective electrons numbers, total atomic cross-sections and buildup factor of some compounds for different radiation sources. Radiation Physics and Chemistry, 130, 171-176.
  • Ludwigson, D., & Hall, A. (1959). The physical metallurgy of precipitation-hardenable stainless steels. Defense Metals Information Center, Battelle Memorial Institute, 111.
  • Manohara, S., Hanagodimath, S., Thind, K., & Gerward, L. (2008). On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906-3912.
  • Marashdeh, M., & Al-Hamarneh, I. F. (2021). Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV. Materials, 14(22), 6873.
  • McAlister, R. D. (2012). Gamma ray attenuation properties of common shielding materials. University Lane Lisle, USA.
  • Meng, X. H., & Zhang, S. Y. (2016). Application and development of stainless steel reinforced concrete structure. Paper presented at the MATEC Web of Conferences.
  • Mourad, M., Saudi, H., Eissa, M., & Hassaan, M. 2021. Modified austenitic stainless-steel alloys for sheilding nuclear reactors. Progress in Nuclear Energy, 142, 104009.
  • Örnek, C., Larsson, A., Harlow, G. S., Zhang, F., Kroll, R., Carla, F., Hussain, H., Kivisäkk, U., Engelberg, D. L., & Lundgren, E. (2020). Metastable precursor structures in hydrogen-infused super duplex stainless steel microstructure–An operando diffraction experiment. Corrosion Science, 176, 109021.
  • Özer, A., & Bahçeci, E. (2009). Aisi 410 Martensitik Paslanmaz Çeliklerin Kesici Takim Ve Kaplamasina Bağli İşlenebilirliği. Journal of the Faculty of Engineering & Architecture of Gazi University, 24(4).
  • Raut, S., Awasarmol, V., Shaikh, S., Ghule, B., Ekar, S., Mane, R., & Pawar, P. (2018). Study of gamma ray energy absorption and exposure buildup factors for ferrites by geometric progression fitting method. Radiation Effects and Defects in Solids, 173(3-4), 329-338. Singh, T., Kaur, P., & Singh, P. S. (2007). A study of photon interaction parameters in some commonly used solvents. Journal of Radiological Protection, 27(1), 79.
  • Singh, V. P., Medhat, M., & Shirmardi, S. (2015). Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiation Physics and Chemistry, 106, 255-260.
  • Szummer, A., Jezierska, E., & Lublińska, K. (1999). Hydrogen surface effects in ferritic stainless steels. Journal of alloys and compounds, 293, 356-360.
  • Tekaslan, Ö., Gerger, N., & Şeker, U. (2008). AISI 304 östenitik paslanmaz çeliklerde kesme parametrelerine bağlı olarak yüzey pürüzlülüklerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 3-12.
  • Toprak, S. M. U., Polat, R., Levet, A., & Toprak, Ş. N. (2023). Effect of stone color, dosage and alkali type on Ahlat Stone (volcanic origin) based geopolymer concretes. Journal of Building Engineering, 67, 106059.
  • Uyar, M. 2019. Borlanmış 430F ferritik paslanmaz çeliğin aşınma davranışı üzerine bir çalışma (Yüksek lisans tezi). Fen Bilimleri Enstitüsü, https://acikbilim.yok.gov.tr/handle/20.500.12812/23541
  • Yontar, A. A. 2011. AISI 304 paslanmaz çeliklerin işlenebilirliğinin incelenmesi. (Yüksek Lisans Tezi), Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=Jda3vtcm-DIc039XxjY7yg&no=-A7T0aIh4ekAW_bq4pfCHA
Yıl 2023, , 1676 - 1685, 01.09.2023
https://doi.org/10.21597/jist.1292270

Öz

Kaynakça

  • Abdel-latif M. A., & Kassab, M. M. (2022). Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys. Applied Radiation and Isotopes , 186, 110263.
  • Alım, B., Özpolat, Ö. F., Şakar, E., Han, İ., Arslan, İ., Singh, V., & Demir, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry, 194, 110009.
  • Aygün, B. (2020). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology, 52(3), 647-653.
  • Büyükyıldız, M. (2017). Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. Sakarya University Journal of Science, 21(3), 314-323.
  • de Bellefon, G. M., Robertson, I., Allen, T., van Duysen, J.-C., & Sridharan, K. (2019). Radiation-resistant nanotwinned austenitic stainless steel. Scripta Materialia, 159, 123-127.
  • Esfandiari, M., Shirmardi, S., & Medhat, M. (2014). Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data. Radiation Physics and Chemistry, 99, 30-36.
  • Gan, B., Liu, S., He, Z., Chen, F., Niu, H., Cheng, J., . . . Yu, B. (2021). Research Progress of Metal-Based Shielding Materials for Neutron and Gamma Rays. Acta Metallurgica Sinica, 34(12), 1609-1617.
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654.
  • Gowthaman, P., Jeyakumar, S., & Saravanan, B. (2020). Machinability and tool wear mechanism of Duplex stainless steel–A review. Materials Today: Proceedings, 26, 1423-1429.
  • Gunoglu, K., Özkavak, H. V., & Akkurt, İ. (2021). Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: Experimental, XCOM and Phy-X/PSD database software. Materials Today Communications, 29, 102793.
  • Hine, G. J. (1952). The effective atomic numbers of materials for various gamma ray processes. Phys. Rev., 85, 725.
  • Hu, S., Mao, Y., Liu, X., Han, E.-H., & Hänninen, H. (2020). Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging. Corrosion Science, 166, 108420.
  • Kahraman, N., Gülenç, B., & Akça, H. (2002). Ark kaynak yöntemi ile birleştirilen ostenitik paslanmaz çelik ile düşük karbonlu çeliğin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17(2).
  • Kiran, K., Ravindraswami, K., Eshwarappa, K., & Somashekarappa, H. (2015). Effective atomic number of selected construction materials using gamma backscattering technique. Annals of Nuclear Energy, 85, 1077-1084.
  • Kore, P. S., Pawar, P. P., & Selvam, T. P. (2016). Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry. Radiation Physics and Chemistry, 119, 74-79.
  • Levet, A., Kavaz, E., & Özdemir, Y. (2020). An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. Journal of Alloys and Compounds, 819, 152946.
  • Levet, A., & Özdemir, Y. (2017). Determination of effective atomic numbers, effective electrons numbers, total atomic cross-sections and buildup factor of some compounds for different radiation sources. Radiation Physics and Chemistry, 130, 171-176.
  • Ludwigson, D., & Hall, A. (1959). The physical metallurgy of precipitation-hardenable stainless steels. Defense Metals Information Center, Battelle Memorial Institute, 111.
  • Manohara, S., Hanagodimath, S., Thind, K., & Gerward, L. (2008). On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906-3912.
  • Marashdeh, M., & Al-Hamarneh, I. F. (2021). Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV. Materials, 14(22), 6873.
  • McAlister, R. D. (2012). Gamma ray attenuation properties of common shielding materials. University Lane Lisle, USA.
  • Meng, X. H., & Zhang, S. Y. (2016). Application and development of stainless steel reinforced concrete structure. Paper presented at the MATEC Web of Conferences.
  • Mourad, M., Saudi, H., Eissa, M., & Hassaan, M. 2021. Modified austenitic stainless-steel alloys for sheilding nuclear reactors. Progress in Nuclear Energy, 142, 104009.
  • Örnek, C., Larsson, A., Harlow, G. S., Zhang, F., Kroll, R., Carla, F., Hussain, H., Kivisäkk, U., Engelberg, D. L., & Lundgren, E. (2020). Metastable precursor structures in hydrogen-infused super duplex stainless steel microstructure–An operando diffraction experiment. Corrosion Science, 176, 109021.
  • Özer, A., & Bahçeci, E. (2009). Aisi 410 Martensitik Paslanmaz Çeliklerin Kesici Takim Ve Kaplamasina Bağli İşlenebilirliği. Journal of the Faculty of Engineering & Architecture of Gazi University, 24(4).
  • Raut, S., Awasarmol, V., Shaikh, S., Ghule, B., Ekar, S., Mane, R., & Pawar, P. (2018). Study of gamma ray energy absorption and exposure buildup factors for ferrites by geometric progression fitting method. Radiation Effects and Defects in Solids, 173(3-4), 329-338. Singh, T., Kaur, P., & Singh, P. S. (2007). A study of photon interaction parameters in some commonly used solvents. Journal of Radiological Protection, 27(1), 79.
  • Singh, V. P., Medhat, M., & Shirmardi, S. (2015). Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiation Physics and Chemistry, 106, 255-260.
  • Szummer, A., Jezierska, E., & Lublińska, K. (1999). Hydrogen surface effects in ferritic stainless steels. Journal of alloys and compounds, 293, 356-360.
  • Tekaslan, Ö., Gerger, N., & Şeker, U. (2008). AISI 304 östenitik paslanmaz çeliklerde kesme parametrelerine bağlı olarak yüzey pürüzlülüklerinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 3-12.
  • Toprak, S. M. U., Polat, R., Levet, A., & Toprak, Ş. N. (2023). Effect of stone color, dosage and alkali type on Ahlat Stone (volcanic origin) based geopolymer concretes. Journal of Building Engineering, 67, 106059.
  • Uyar, M. 2019. Borlanmış 430F ferritik paslanmaz çeliğin aşınma davranışı üzerine bir çalışma (Yüksek lisans tezi). Fen Bilimleri Enstitüsü, https://acikbilim.yok.gov.tr/handle/20.500.12812/23541
  • Yontar, A. A. 2011. AISI 304 paslanmaz çeliklerin işlenebilirliğinin incelenmesi. (Yüksek Lisans Tezi), Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=Jda3vtcm-DIc039XxjY7yg&no=-A7T0aIh4ekAW_bq4pfCHA
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Aytaç Levet 0000-0002-1086-5732

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 4 Mayıs 2023
Kabul Tarihi 13 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Levet, A. (2023). A Study of Photon Interaction Parameters for Some Stainless Steel Alloys. Journal of the Institute of Science and Technology, 13(3), 1676-1685. https://doi.org/10.21597/jist.1292270
AMA Levet A. A Study of Photon Interaction Parameters for Some Stainless Steel Alloys. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1676-1685. doi:10.21597/jist.1292270
Chicago Levet, Aytaç. “A Study of Photon Interaction Parameters for Some Stainless Steel Alloys”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1676-85. https://doi.org/10.21597/jist.1292270.
EndNote Levet A (01 Eylül 2023) A Study of Photon Interaction Parameters for Some Stainless Steel Alloys. Journal of the Institute of Science and Technology 13 3 1676–1685.
IEEE A. Levet, “A Study of Photon Interaction Parameters for Some Stainless Steel Alloys”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1676–1685, 2023, doi: 10.21597/jist.1292270.
ISNAD Levet, Aytaç. “A Study of Photon Interaction Parameters for Some Stainless Steel Alloys”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1676-1685. https://doi.org/10.21597/jist.1292270.
JAMA Levet A. A Study of Photon Interaction Parameters for Some Stainless Steel Alloys. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1676–1685.
MLA Levet, Aytaç. “A Study of Photon Interaction Parameters for Some Stainless Steel Alloys”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1676-85, doi:10.21597/jist.1292270.
Vancouver Levet A. A Study of Photon Interaction Parameters for Some Stainless Steel Alloys. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1676-85.