Usage Potential of Lignocellulosic Material Instead of Polyimide in GEM Particle Detectors
Yıl 2023,
, 1686 - 1695, 01.09.2023
Yalçın Kalkan
Öz
This study investigates the potential use of lignocellulosic material for Gas Electron Multiplier (GEM) foils in high-energy physics experiments. A 50 µm thick lignocellulosic film was created using a scattering method, and both surfaces were coated with a 2 µm thick copper electrode layer. Electrical characterization studies were conducted to assess the suitability of lignocellulosic material in GEM detectors. To ensure consistent atmospheric conditions during measurements, a special chamber was designed to monitor temperature and humidity values over time using an SHT3x sensor module and Rense Temperature/Humidity Meter. Electrical measurements were performed using a Keithley 4200 semiconductor characterization system, and I-V curves showing the current-voltage relationship under different atmospheric conditions were plotted. The results demonstrate the potential for developing sustainable and efficient detectors for various high-energy physics experiments using GEM detectors with lignocellulosic foils. This study comprehensively presents the advantages and disadvantages of using lignocellulosic material in GEM foils and contributes to the development of more environmentally friendly alternatives for GEM detector manufacturing.
Destekleyen Kurum
Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu (TENMAK)
Proje Numarası
2020 TENMAK(CERN)A5.H1.F5-27
Teşekkür
This study was supported by Turkish Energy, Nuclear and Mineral Research Agency. Project number:2020 TENMAK(CERN)A5.H1.F5-27.
Kaynakça
- Alberti, G., Zanoni, C., Losi, V., Magnaghi, L. R., & Biesuz, R. (2021). Current trends in polymer based sensors. Chemosensors, 9(5), 108.
- Bachmann, S., Bressan, A., Ropelewski, L., Sauli, F., Sharma, A., & Mörmann, D. (1999). Charge amplification and transfer processes in the gas electron multiplier. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 438(2-3), 376-408.
- Beginez, B, Ortiz T., Aranda M. P., Martinez G., Merinero M., Arias F. A. & Alcudia A. (2020) Nanomaterials, 10(7), 1403.
- Butnaru, E., Pamfil, D., Stoleru, E., & Brebu, M. (2022). Characterization of bark, needles and cones from silver fir (Abies alba Mill.) towards valorization of biomass forestry residues. Biomass and Bioenergy, 159, 106413.
- CERN RD51 Collaboration (http://rd51-public.web.cern.ch/RD51-Public/)
- Chen X., Su Y., Reay D. & Riffat S., (2016). Recent research developments in polymer heat exchangers – A review. Renewable and Sustainable Energy Reviews, 60, 1367-1386.
- Chernyshova, M., Malinowski, K., Czarski, T., Kowalska-Strzęciwilk, E., Linczuk, P., Wojeński, A., ... & Melikhov, Y. (2019). Advantages of Al based GEM detector aimed at plasma soft− semi hard X-ray radiation imaging. Fusion Engineering and Design, 146, 1039-1042.
- Cherubini, F. (2010). The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy conversion and management, 51(7), 1412-1421.
- Djafari Petroudy, S. R., Shojaeiarani, J., & Chabot, B. (2023). Recent advances in isolation, characterization, and potential applications of nanocellulose-based composites: a comprehensive review. Journal of Natural Fibers, 20(1), 2146830.
- Elmowafy E., Abdal-Hay A., Skouras A., Tiboni M., Casettari L. & Guarino V. (2019) Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering, Expert Review of Medical Devices, 16:6, 467-482.
- Franchino, S., Negodaev, M., Bolshakov, A., Ashkinazi, E., Kalkan, Y., Popovich, A., ... & Ralchenko, V. (2016). Gas electron multiplier based on laser-perforated CVD diamond film: First tests. arXiv preprint arXiv:1606.05788.
- Fujiwara, T., Mitsuya, Y., Takahashi, H., Fushie, T., Kishimito, S., Guerard, B., & Uesaka, M. (2014). The performance of Glass GEM. Journal of Instrumentation, 9(11), P11007.
- Griffith, M. J., Cottam, S., Stamenkovic, J., Posar, J. A., & Petasecca, M. (2020). Printable organic semiconductors for radiation detection: from fundamentals to fabrication and functionality. Frontiers in Physics, 8, 22.
- Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource technology. 262, 310-318.
- Isikgor F.H. & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry. 6, 4497-4559.
- Iwamoto, M. and Fukuda A. (1992). Charge Storage Phenomena and I-V Characteristics Observed in Ultrathin Polyimide Langmuir-Blodgett Films, Jpn. J. Appl. Phys. 31 1092.
- Jo, S., Lee, H., Kim, T. H., Lee, K. W., Park, H. S., Kim, H. R., & Lee, T. S. (2023). Detecting β-Radiation Using a Plastic Scintillator Containing 2, 5-Diphenyloxazole-Functionalized Conjugated Polyfluorene. ACS Applied Polymer Materials.
- Kafafi, S. A. (1990). The ionization potential, electron affinity and energy gap of polyimide. Chemical physics letters, 169(6), 561-563.
- Kalkan, Y., Öztürk, S., & Kösemen, A. (2022). Effects of PCBM loading on high sensitive P3HT based vertical bulk resistive X-ray detector. Organic Electronics, 111, 106665.
- Kalkan, Y. (2012) Basics of Polyimide, 9.th RD51 Collaboration Meeting. 20-22 February 2013,
CERN. (http://indico.cern.ch/event/176664/session/8/contribution/56)
- Ma, Q., Yu, Y., Sindoro, M., Fane, A. G., Wang, R., & Zhang, H. (2017). Carbon‐based functional materials derived from waste for water remediation and energy storage. Advanced materials, 29(13), 1605361.
- Markiewicz, E., Paukszta, D., & Borysiak, S. (2009). Dielectric properties of lignocellulosic materials-polypropylene composites. Materials Science-Poland, 27(2), 581-594.
- Muhammad A., Rahman M. R., Baini R. & Bakri M. K. B. (2021) Advances in Sustainable Polymer Composites. Woodhead Publishing Series in Composites Science and Engineering. 185-207.
- Pang, C. H., Edward L. & Wu, T. (2018). Influence of lignocellulose and plant cell walls on biomass char morphology and combustion reactivity. Biomass and Bioenergy. 119, 480-491.
- Patil, A., Patel, A. & Purohit, R.. (2017). An overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings. 4, 3807-3815.
- Patell M., Pardhi B., Chopara S. & Pal M. (2018) Lightweight Composite Materials for Automotive - A Review. International Research Journal of Engineering and Technology (IRJET). 5 41-47.
- Rehman, M., Fahad, S., Du, G., Cheng X., Yang Y., Tang K., Liu L., Liu F. Deng G. (2012) Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environmental Science and Pollution Research. 28, 52832–52843.
- Sauli, F. (1997). GEM: A new concept for electron amplification in gas detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 386(2-3), 531-534.
- Sessler, G. M., Hahn, B., Yoon, D. Y. (1986). Electrical conduction in polyimide films. Journal of Applied Physics 1 60 (1): 318–326.
- Stéphan, C. (2011). 1 Gas Filled Detectors. Experimental techniques in nuclear physics, 11.
- Sword, E. D. (2017). Humidity-induced damage in polyvinyl toluene and polystyrene plastic scintillator. In 2017 IEEE international symposium on technologies for homeland security (HST) (pp. 1-4). IEEE.
- Varun, R. (1999). Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, PhD Thesis, Virginia Tech.
- Wang, H. M., Yuan, T. Q., Song, G. Y., & Sun, R. C. (2021). Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 23(11), 3790-3817.
- Zhang, M., & Yeow, J. T. (2020). A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite. Carbon, 156, 339-345.
GEM Parçacık Dedektörlerinde Lignoselülozik Malzeme Kullanım Potansiyeli
Yıl 2023,
, 1686 - 1695, 01.09.2023
Yalçın Kalkan
Öz
Bu çalışma, yüksek enerji fiziği deneylerinde kullanılan Gas Electron Multiplier (GEM) yaprakları için lignoselülozik malzemenin kullanım potansiyelini araştırmaktadır. Saçtırma yöntemi kullanılarak 50 μm kalınlığında bir lignoselülozik film oluşturulmuş ve her iki yüzeyine de 2 μm kalınlığında bakır elektrot tabakası kaplanmıştır. Lignoselülozik malzemenin GEM dedektörlerinde kullanımının uygunluğunu değerlendirmek için elektriksel karakterizasyon çalışmaları yapılmıştır. Ölçümler sırasında tutarlı atmosferik koşulları sağlamak için özel bir odacık tasarlanmış, böylece sıcaklık ve nem değerleri SHT3x sensör modülü ve Rense Sıcaklık/Nemölçer kullanarak zamana bağlı olarak izlenebilmiştir. Elektriksel ölçümler Keithley 4200 yarıiletken karakterizasyon sistemi kullanılarak yapılmış ve farklı atmosferik koşullar altında akımın gerilime bağlı değişimi gösteren I-V diyagramı çizilmiştir. Sonuçlar, lignoselülozik folyo kullanan GEM dedektörlerinin çeşitli yüksek enerjili fizik deneyleri için sürdürülebilir ve verimli dedektörler geliştirme potansiyeli sunduğunu göstermektedir. Çalışma, GEM yapraklarında lignoselülozik malzeme kullanımının avantajları ve dezavantajlarını kapsamlı olarak ortaya koymakta ve GEM dedektörlerinin imalatı için daha çevre dostu alternatiflerin geliştirilmesine katkıda bulunmaktadır.
Proje Numarası
2020 TENMAK(CERN)A5.H1.F5-27
Kaynakça
- Alberti, G., Zanoni, C., Losi, V., Magnaghi, L. R., & Biesuz, R. (2021). Current trends in polymer based sensors. Chemosensors, 9(5), 108.
- Bachmann, S., Bressan, A., Ropelewski, L., Sauli, F., Sharma, A., & Mörmann, D. (1999). Charge amplification and transfer processes in the gas electron multiplier. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 438(2-3), 376-408.
- Beginez, B, Ortiz T., Aranda M. P., Martinez G., Merinero M., Arias F. A. & Alcudia A. (2020) Nanomaterials, 10(7), 1403.
- Butnaru, E., Pamfil, D., Stoleru, E., & Brebu, M. (2022). Characterization of bark, needles and cones from silver fir (Abies alba Mill.) towards valorization of biomass forestry residues. Biomass and Bioenergy, 159, 106413.
- CERN RD51 Collaboration (http://rd51-public.web.cern.ch/RD51-Public/)
- Chen X., Su Y., Reay D. & Riffat S., (2016). Recent research developments in polymer heat exchangers – A review. Renewable and Sustainable Energy Reviews, 60, 1367-1386.
- Chernyshova, M., Malinowski, K., Czarski, T., Kowalska-Strzęciwilk, E., Linczuk, P., Wojeński, A., ... & Melikhov, Y. (2019). Advantages of Al based GEM detector aimed at plasma soft− semi hard X-ray radiation imaging. Fusion Engineering and Design, 146, 1039-1042.
- Cherubini, F. (2010). The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy conversion and management, 51(7), 1412-1421.
- Djafari Petroudy, S. R., Shojaeiarani, J., & Chabot, B. (2023). Recent advances in isolation, characterization, and potential applications of nanocellulose-based composites: a comprehensive review. Journal of Natural Fibers, 20(1), 2146830.
- Elmowafy E., Abdal-Hay A., Skouras A., Tiboni M., Casettari L. & Guarino V. (2019) Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering, Expert Review of Medical Devices, 16:6, 467-482.
- Franchino, S., Negodaev, M., Bolshakov, A., Ashkinazi, E., Kalkan, Y., Popovich, A., ... & Ralchenko, V. (2016). Gas electron multiplier based on laser-perforated CVD diamond film: First tests. arXiv preprint arXiv:1606.05788.
- Fujiwara, T., Mitsuya, Y., Takahashi, H., Fushie, T., Kishimito, S., Guerard, B., & Uesaka, M. (2014). The performance of Glass GEM. Journal of Instrumentation, 9(11), P11007.
- Griffith, M. J., Cottam, S., Stamenkovic, J., Posar, J. A., & Petasecca, M. (2020). Printable organic semiconductors for radiation detection: from fundamentals to fabrication and functionality. Frontiers in Physics, 8, 22.
- Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource technology. 262, 310-318.
- Isikgor F.H. & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry. 6, 4497-4559.
- Iwamoto, M. and Fukuda A. (1992). Charge Storage Phenomena and I-V Characteristics Observed in Ultrathin Polyimide Langmuir-Blodgett Films, Jpn. J. Appl. Phys. 31 1092.
- Jo, S., Lee, H., Kim, T. H., Lee, K. W., Park, H. S., Kim, H. R., & Lee, T. S. (2023). Detecting β-Radiation Using a Plastic Scintillator Containing 2, 5-Diphenyloxazole-Functionalized Conjugated Polyfluorene. ACS Applied Polymer Materials.
- Kafafi, S. A. (1990). The ionization potential, electron affinity and energy gap of polyimide. Chemical physics letters, 169(6), 561-563.
- Kalkan, Y., Öztürk, S., & Kösemen, A. (2022). Effects of PCBM loading on high sensitive P3HT based vertical bulk resistive X-ray detector. Organic Electronics, 111, 106665.
- Kalkan, Y. (2012) Basics of Polyimide, 9.th RD51 Collaboration Meeting. 20-22 February 2013,
CERN. (http://indico.cern.ch/event/176664/session/8/contribution/56)
- Ma, Q., Yu, Y., Sindoro, M., Fane, A. G., Wang, R., & Zhang, H. (2017). Carbon‐based functional materials derived from waste for water remediation and energy storage. Advanced materials, 29(13), 1605361.
- Markiewicz, E., Paukszta, D., & Borysiak, S. (2009). Dielectric properties of lignocellulosic materials-polypropylene composites. Materials Science-Poland, 27(2), 581-594.
- Muhammad A., Rahman M. R., Baini R. & Bakri M. K. B. (2021) Advances in Sustainable Polymer Composites. Woodhead Publishing Series in Composites Science and Engineering. 185-207.
- Pang, C. H., Edward L. & Wu, T. (2018). Influence of lignocellulose and plant cell walls on biomass char morphology and combustion reactivity. Biomass and Bioenergy. 119, 480-491.
- Patil, A., Patel, A. & Purohit, R.. (2017). An overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings. 4, 3807-3815.
- Patell M., Pardhi B., Chopara S. & Pal M. (2018) Lightweight Composite Materials for Automotive - A Review. International Research Journal of Engineering and Technology (IRJET). 5 41-47.
- Rehman, M., Fahad, S., Du, G., Cheng X., Yang Y., Tang K., Liu L., Liu F. Deng G. (2012) Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environmental Science and Pollution Research. 28, 52832–52843.
- Sauli, F. (1997). GEM: A new concept for electron amplification in gas detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 386(2-3), 531-534.
- Sessler, G. M., Hahn, B., Yoon, D. Y. (1986). Electrical conduction in polyimide films. Journal of Applied Physics 1 60 (1): 318–326.
- Stéphan, C. (2011). 1 Gas Filled Detectors. Experimental techniques in nuclear physics, 11.
- Sword, E. D. (2017). Humidity-induced damage in polyvinyl toluene and polystyrene plastic scintillator. In 2017 IEEE international symposium on technologies for homeland security (HST) (pp. 1-4). IEEE.
- Varun, R. (1999). Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, PhD Thesis, Virginia Tech.
- Wang, H. M., Yuan, T. Q., Song, G. Y., & Sun, R. C. (2021). Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 23(11), 3790-3817.
- Zhang, M., & Yeow, J. T. (2020). A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite. Carbon, 156, 339-345.