Araştırma Makalesi
BibTex RIS Kaynak Göster

Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi

Yıl 2024, , 75 - 86, 01.03.2024
https://doi.org/10.21597/jist.1326695

Öz

Günümüzde pestisitler tarımsal faaliyetlerde oldukça yaygın olarak kullanılmakta ve yoğun ve gelişigüzel kullanılmaları, pestisitlerin halk sağlığını ve ekosistemi tehdit etmesine neden olmaktadır. Birçok çevresel kirleticide olduğu gibi pestisitlerin de sitotoksik ve genotoksik etkileri yıllardır bir endişe kaynağıdır. Bu çalışmada sentetik bir piretroid olan tau-fluvalinat içerikli bir insektisitin (Mavrik® 2F) Allium cepa kök ucu meristemleri üzerindeki sitotoksik ve genotoksik etkileri incelenmiştir. Kök büyüme inhibisyon testi sonucunda tau-fluvalinat için etkili konsantrasyon (EC50) 330 mg/L olarak bulunmuştur. Sonrasında soğan kökleri 24 saat boyunca 3 farklı tau-fluvalinat konsantrasyonuna (165, 330 ve 660 mg/L) maruz bırakılmış ve yapılan mikroskobik incelemeler ile mitotik indeks (Mİ), faz indeksi (Fİ) değerleri ve kromozom aberasyon (KA) sıklıkları hesaplanmıştır. Yapılan istatistiksel analizler neticesinde, tau-fluvalinat içerikli model insektisitin A. cepa’da kök uzamasını inhibe edici etki gösterdiği sonucunun yanı sıra, Mİ değerini azalttığı ve Fİ değerlerini değiştirdiği için sitotoksisiteye ve KA oluşumunu artırdığı için genotoksisiteye sahip olduğu sonucuna varılmıştır. Ayrıca model insektisitin kullanılması durumunda, A. cepa üzerinde 330 mg/L tau-fluvalinat konsantrasyonunun subletal etkilere, 660 mg/L tau-fluvalinat konsantrasyonunun ise letal etkilere neden olabileceği değerlendirilmiştir. Bu çalışmanın sonuçları ışığında tau-fluvalinat içeren pestisitlerin tarımsal faaliyetlerde kullanımı esnasında çok dikkatli olunması ve toksik etkilerinin azaltılması için 165 mg/L’nin çok daha altında konsantrasyonlarının uygulanması önerilmektedir.

Kaynakça

  • Akashe, M. M., Pawade, U. V., Nikam, A. V. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda & Pharmacy, 9(4), 144-150. https://doi.org/10.7897/2277-4343.094131
  • Asita, A. O. Matebesi, L. P. (2010). Genotoxicity of hormoban and seven other pesticides to onion root tip meristematic cells. African Journal of Biotechnology, 9(27), 4225-4232.
  • Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D., Menicucci, F., Pesnya, D. S., Popescu, A., Romanovsky, A. V., Schiff, S., Ślusarczyk, J, de Souza, C. P., Srivastava, A., Sutan, A., Papini, A. (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3), 191-209. https://doi.org/10.1080/00087114.2018.1503496.
  • Caritá, R., Marin-Morales, M. A. (2008). Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere, 72(5), 722-725. https://doi.org/10.1016/j.chemosphere.2008.03.056.
  • Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.108.
  • Chrustek, A., Hołyńska-Iwan, I., Dziembowska, I., Bogusiewicz, J., Wróblewski, M., Cwynar, A., Olszewska-Słonina, D. (2018). Current research on the safety of pyrethroids used as insecticides. Medicina, 54(4), 61. https://doi.org/10.3390/medicina54040061.
  • Davies, T. G. E., Field, L. M., Usherwood, P. N. R., Williamson, M. S. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. https://doi.org/10.1080/15216540701352042. El-Ghamery, A. A., El-Kholy, M. A., El-Yousser, A. (2003). Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 29–41. https://doi.org/10.1016/S1383-5718(03)00052-4.
  • Field, L. M., Davies, T. G. E., O’Reilly, A. O., Williamson, M. S., Wallace BA. (2017). Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal, 46(7), 675-679. https://doi.org/10.1007/s00249-016-1195-1.
  • Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x.
  • Fiskesjö, G. (1988). The Allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 197(2), 243-260. https://doi.org/10.1016/0027-5107(88)90096-6.
  • Gill, H. K., Garg, H. (2014). Pesticide: Environmental impacts and management strategies. M. L. Larramendy and S. Soloneski (Ed.), Pesticides-Toxic Aspects (pp. 187-230). InTech. https://doi.org/10.5772/57399.
  • Haliem, A. S. (1990). Cytological effect of the herbicide sencorer on mitosis of A. cepa. Egyptian Journal of Botany, 33(2), 93-104.
  • Kalita, M. K., Haloi, K., Devi, D. (2017). Cypermethrin formulation (Ustad-10 EC) induces genotoxicity via apoptosis, affects nutritional physiology, and modulates immune response in silkworm Philosamia ricini (Lepidoptera: Saturniidae). Journal of Economic Entomology, 110(3), 1010-1024. https://doi.org/10.1093/jee/tox04447.
  • Karaismailoglu, M. C. (2017). Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia, 70(4), 378-384. https://doi.org/10.1080/00087114.2017.1371992.
  • Kuriyama, R., Sakai, H. (1974). Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. The Journal of Biochemistry, 76(3), 651-654. https://doi.org/10.1093/oxfordjournals.jbchem.a130609.
  • Kwankua, W., Sengsai, S., Kuleung, C., Euawong, N. (2010). Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor. Ecotoxicology and Environmental Safety, 73(5), 949-954. https://doi.org/10.1016/j.ecoenv.2010.04.001.
  • Leme, D. M., Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research-Reviews in Mutation Research, 682, 71-81. https://doi.org/10.1016/j.mrrev.2009.06.002.
  • Liman, R., Ciğerci, İ. H., Akyıl, D., Eren, Y., Konuk, M. (2011). Determination of genotoxicity of Fenaminosulf by Allium and comet tests. Pesticide Biochemistry and Physiology, 99(1), 61-64. https://doi.org/10.1016/j.pestbp.2010.10.006.
  • Mao, X. J., Wan, Y. Q., Yan, A. P., Shen, M. Y., Wei, Y. L. (2012). Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC-MS. Talanta, 97, 131–141. https://doi.org/10.1016/j.talanta.2012.04.007.
  • Mesi, A., Kopliku, D. (2013). Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa L. Procedia Technology, 8, 19-26. https://doi.org/10.1016/j.protcy.2013.11.005.
  • Nagy, K., Rácz, G., Matsumoto, T., Ádány, R., Ádám, B. (2014). Evaluation of the genotoxicity of the pyrethroid insecticide phenothrin. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 770, 1-5. https://doi.org/10.1016/j.mrgentox.2014.05.001.
  • Odeigah, P. G. C., Nurudeen, O., Amund, O. O. (1997). Genotoxicity of oil field wastewater in Nigeria. Hereditas, 126(2), 161-167. https://doi.org/10.1111/j.1601-5223.1997.00161.x.
  • Pérez, G. L., Vera, M. S., Miranda, L. A. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. A. Kortekamp (Ed.), Herbicides and Environment (pp. 343-368). InTech. https://doi.org/10.5772/12877.
  • Ping, K. Y., Darah, I., Yusuf, U. K., Yeng, C., Sasidharan, S. (2012). Genotoxicity of Euphorbia hirta: An Allium cepa assay. Molecules, 17(7), 7782-7791. https://doi.org/10.3390/molecules17077782.
  • Ray, S., Kundu, L. M., Goswami, S., Roy, G. C., Chatterjee, S., Dutta, S., Chaudhuri, A., Chakrabarti, C. S. (2013). Metaphase arrest and delay in cell cycle kinetics of root apical meristems and mouse bone marrow cells treated with leaf aqueous extracts of Clerodendrum viscosum Vent. Cell Proliferation, 46(1), 109-117. https://doi.org/10.1111/cpr.12011.
  • Sabová, L., Maruščáková, I. C., Koleničová, S., Mudroňová, D., Holečková, B., Sabo, R., Sobeková, A., Majchrák, T., Ratvaj, M. (2022). The adverse effects of synthetic acaricide tau-fluvalinate (tech.) on winter adult honey bees. Environmental Toxicology and Pharmacology, 92, 103861. https://doi.org/10.1016/j.etap.2022.103861.
  • Saillenfait, A.-M., Ndiaye, D., Sabaté, J.-P. (2015). Pyrethroids: Exposure and health effects – An update. International Journal of Hygiene and Environmental Health, 218(3), 281-292. https://doi.org/10.1016/j.ijheh.2015.01.002.
  • Sari, F. (2022). Lethal and sublethal effects of the pyrethroid insecticide tau-fluvalinate on the non-target organism Gammarus roeseli: A study of acute toxicity, genotoxicity and locomotor activity. Archives of Biological Sciences, 74(4), 347-358. https://doi.org/10.2298/ABS220930033S.
  • Sharma, C. (1983). Plant meristems as monitors of genetic toxicity of environmental chemicals. Current Science, 52(21), 1000-1002.
  • Sheikh, N., Patowary, H., Laskar, R. A. (2020). Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Molecular & Cellular Toxicology, 16(3), 291-299. https://doi.org/10.1007/s13273-020-00077-7.
  • Smaka-Kincl, V., Stegnar, P., Lovka, M., Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutation Research/Genetic Toxicology, 368(3-4), 171-179. https://doi.org/10.1016/S0165-1218(96)90059-2. Stanley, J., Preetha, G. (2016). Pesticide Toxicity to Non-Target Organisms: Exposure, Toxicity and Risk Assessment Methodologies. Berlin: Springer Dordrecht. https://doi.org/10.1007/978-94-017-7752-0.
  • Sundaramoorthy, R., Velusamy, Y., Balaji, A. P. B., Mukherjee, A., Chandrasekaran, N. (2016). Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro. Chemico-Biological Interactions, 257, 119-124. https://doi.org/10.1016/j.cbi.2016.08.00148.
  • Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112. https://doi.org/10.3390/ijerph180311125.
  • Ünal, F., Helvacı Tülek, N. D., Yüzbaşıoğlu, D., Çelik, M. (2020). Methidathion insektisit/akarisitinin sitotoksik ve genotoksik potansiyelinin Allium testi ile incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 1-12. https://doi.org/10.5281/zenodo.4317924.
  • Wijeyaratne, W. M. D. N., Wickramasinghe, P. G. M. U. (2020). Chromosomal abnormalities in Allium cepa induced by treated textile effluents: Spatial and temporal variations. Journal of Toxicology, 2020,8814196. https://doi.org/10.1155/2020/8814196.
  • Zhu, Q., Yang, Y., Zhong, Y., Lao, Z., O’Neill, P., Hong, D., Zhang, K., Zhao, S. (2020). Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere, 254, 126779. https://doi.org/10.1016/j.chemosphere.2020.126779.

Examination of the Cytotoxic and Genotoxic Effects of A Tau-fluvalinate-containing Insecticide Using Allium Test

Yıl 2024, , 75 - 86, 01.03.2024
https://doi.org/10.21597/jist.1326695

Öz

Nowadays, pesticides are widely used in agricultural activities, and their intensive and indiscriminate use causes pesticides to threaten public health and the ecosystem. As with many environmental pollutants, the cytotoxic and genotoxic effects of pesticides have been a concern for many years. In this study, the cytotoxic and genotoxic effects of a synthetic pyrethroid tau-fluvalinate-containing insecticide (Mavrik® 2F) on Allium cepa root tip meristems were investigated. As a result of the root growth inhibition test, the effective concentration (EC50) for tau-fluvalinate was found to be 330 mg/L. Afterwards, onion roots were exposed to three different tau-fluvalinate concentrations (165, 330 and 660 mg/L) for 24 hours and mitotic index (MI), phase index (PI) values and chromosome aberration (CA) frequencies were calculated by microscopic examinations. After the statistical analyzes, as well as the conclusion that the tau-fluvalinate-containing model insecticide showed the root elongation-inhibiting effect, it was concluded that it had cytotoxicity because it decreased MI value and changed the PI values in A. cepa and that it had genotoxicity because it increased the formation of CA. In addition, in the case of the use of the model insecticide, it was assessed that 330 mg/L tau-fluvalinate concentration could cause sublethal effects and that 660 mg/L tau-fluvalinate concentration could cause lethal effects on A. cepa. In the light of the results of this study, it is recommended to be very careful during the use of pesticides containing tau-fluvalinate in agricultural activities and to apply concentrations much lower than 165 mg/L in order to reduce their toxic effects.

Kaynakça

  • Akashe, M. M., Pawade, U. V., Nikam, A. V. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda & Pharmacy, 9(4), 144-150. https://doi.org/10.7897/2277-4343.094131
  • Asita, A. O. Matebesi, L. P. (2010). Genotoxicity of hormoban and seven other pesticides to onion root tip meristematic cells. African Journal of Biotechnology, 9(27), 4225-4232.
  • Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D., Menicucci, F., Pesnya, D. S., Popescu, A., Romanovsky, A. V., Schiff, S., Ślusarczyk, J, de Souza, C. P., Srivastava, A., Sutan, A., Papini, A. (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3), 191-209. https://doi.org/10.1080/00087114.2018.1503496.
  • Caritá, R., Marin-Morales, M. A. (2008). Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere, 72(5), 722-725. https://doi.org/10.1016/j.chemosphere.2008.03.056.
  • Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.108.
  • Chrustek, A., Hołyńska-Iwan, I., Dziembowska, I., Bogusiewicz, J., Wróblewski, M., Cwynar, A., Olszewska-Słonina, D. (2018). Current research on the safety of pyrethroids used as insecticides. Medicina, 54(4), 61. https://doi.org/10.3390/medicina54040061.
  • Davies, T. G. E., Field, L. M., Usherwood, P. N. R., Williamson, M. S. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. https://doi.org/10.1080/15216540701352042. El-Ghamery, A. A., El-Kholy, M. A., El-Yousser, A. (2003). Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 29–41. https://doi.org/10.1016/S1383-5718(03)00052-4.
  • Field, L. M., Davies, T. G. E., O’Reilly, A. O., Williamson, M. S., Wallace BA. (2017). Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal, 46(7), 675-679. https://doi.org/10.1007/s00249-016-1195-1.
  • Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x.
  • Fiskesjö, G. (1988). The Allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 197(2), 243-260. https://doi.org/10.1016/0027-5107(88)90096-6.
  • Gill, H. K., Garg, H. (2014). Pesticide: Environmental impacts and management strategies. M. L. Larramendy and S. Soloneski (Ed.), Pesticides-Toxic Aspects (pp. 187-230). InTech. https://doi.org/10.5772/57399.
  • Haliem, A. S. (1990). Cytological effect of the herbicide sencorer on mitosis of A. cepa. Egyptian Journal of Botany, 33(2), 93-104.
  • Kalita, M. K., Haloi, K., Devi, D. (2017). Cypermethrin formulation (Ustad-10 EC) induces genotoxicity via apoptosis, affects nutritional physiology, and modulates immune response in silkworm Philosamia ricini (Lepidoptera: Saturniidae). Journal of Economic Entomology, 110(3), 1010-1024. https://doi.org/10.1093/jee/tox04447.
  • Karaismailoglu, M. C. (2017). Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia, 70(4), 378-384. https://doi.org/10.1080/00087114.2017.1371992.
  • Kuriyama, R., Sakai, H. (1974). Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. The Journal of Biochemistry, 76(3), 651-654. https://doi.org/10.1093/oxfordjournals.jbchem.a130609.
  • Kwankua, W., Sengsai, S., Kuleung, C., Euawong, N. (2010). Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor. Ecotoxicology and Environmental Safety, 73(5), 949-954. https://doi.org/10.1016/j.ecoenv.2010.04.001.
  • Leme, D. M., Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research-Reviews in Mutation Research, 682, 71-81. https://doi.org/10.1016/j.mrrev.2009.06.002.
  • Liman, R., Ciğerci, İ. H., Akyıl, D., Eren, Y., Konuk, M. (2011). Determination of genotoxicity of Fenaminosulf by Allium and comet tests. Pesticide Biochemistry and Physiology, 99(1), 61-64. https://doi.org/10.1016/j.pestbp.2010.10.006.
  • Mao, X. J., Wan, Y. Q., Yan, A. P., Shen, M. Y., Wei, Y. L. (2012). Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC-MS. Talanta, 97, 131–141. https://doi.org/10.1016/j.talanta.2012.04.007.
  • Mesi, A., Kopliku, D. (2013). Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa L. Procedia Technology, 8, 19-26. https://doi.org/10.1016/j.protcy.2013.11.005.
  • Nagy, K., Rácz, G., Matsumoto, T., Ádány, R., Ádám, B. (2014). Evaluation of the genotoxicity of the pyrethroid insecticide phenothrin. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 770, 1-5. https://doi.org/10.1016/j.mrgentox.2014.05.001.
  • Odeigah, P. G. C., Nurudeen, O., Amund, O. O. (1997). Genotoxicity of oil field wastewater in Nigeria. Hereditas, 126(2), 161-167. https://doi.org/10.1111/j.1601-5223.1997.00161.x.
  • Pérez, G. L., Vera, M. S., Miranda, L. A. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. A. Kortekamp (Ed.), Herbicides and Environment (pp. 343-368). InTech. https://doi.org/10.5772/12877.
  • Ping, K. Y., Darah, I., Yusuf, U. K., Yeng, C., Sasidharan, S. (2012). Genotoxicity of Euphorbia hirta: An Allium cepa assay. Molecules, 17(7), 7782-7791. https://doi.org/10.3390/molecules17077782.
  • Ray, S., Kundu, L. M., Goswami, S., Roy, G. C., Chatterjee, S., Dutta, S., Chaudhuri, A., Chakrabarti, C. S. (2013). Metaphase arrest and delay in cell cycle kinetics of root apical meristems and mouse bone marrow cells treated with leaf aqueous extracts of Clerodendrum viscosum Vent. Cell Proliferation, 46(1), 109-117. https://doi.org/10.1111/cpr.12011.
  • Sabová, L., Maruščáková, I. C., Koleničová, S., Mudroňová, D., Holečková, B., Sabo, R., Sobeková, A., Majchrák, T., Ratvaj, M. (2022). The adverse effects of synthetic acaricide tau-fluvalinate (tech.) on winter adult honey bees. Environmental Toxicology and Pharmacology, 92, 103861. https://doi.org/10.1016/j.etap.2022.103861.
  • Saillenfait, A.-M., Ndiaye, D., Sabaté, J.-P. (2015). Pyrethroids: Exposure and health effects – An update. International Journal of Hygiene and Environmental Health, 218(3), 281-292. https://doi.org/10.1016/j.ijheh.2015.01.002.
  • Sari, F. (2022). Lethal and sublethal effects of the pyrethroid insecticide tau-fluvalinate on the non-target organism Gammarus roeseli: A study of acute toxicity, genotoxicity and locomotor activity. Archives of Biological Sciences, 74(4), 347-358. https://doi.org/10.2298/ABS220930033S.
  • Sharma, C. (1983). Plant meristems as monitors of genetic toxicity of environmental chemicals. Current Science, 52(21), 1000-1002.
  • Sheikh, N., Patowary, H., Laskar, R. A. (2020). Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Molecular & Cellular Toxicology, 16(3), 291-299. https://doi.org/10.1007/s13273-020-00077-7.
  • Smaka-Kincl, V., Stegnar, P., Lovka, M., Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutation Research/Genetic Toxicology, 368(3-4), 171-179. https://doi.org/10.1016/S0165-1218(96)90059-2. Stanley, J., Preetha, G. (2016). Pesticide Toxicity to Non-Target Organisms: Exposure, Toxicity and Risk Assessment Methodologies. Berlin: Springer Dordrecht. https://doi.org/10.1007/978-94-017-7752-0.
  • Sundaramoorthy, R., Velusamy, Y., Balaji, A. P. B., Mukherjee, A., Chandrasekaran, N. (2016). Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro. Chemico-Biological Interactions, 257, 119-124. https://doi.org/10.1016/j.cbi.2016.08.00148.
  • Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112. https://doi.org/10.3390/ijerph180311125.
  • Ünal, F., Helvacı Tülek, N. D., Yüzbaşıoğlu, D., Çelik, M. (2020). Methidathion insektisit/akarisitinin sitotoksik ve genotoksik potansiyelinin Allium testi ile incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 1-12. https://doi.org/10.5281/zenodo.4317924.
  • Wijeyaratne, W. M. D. N., Wickramasinghe, P. G. M. U. (2020). Chromosomal abnormalities in Allium cepa induced by treated textile effluents: Spatial and temporal variations. Journal of Toxicology, 2020,8814196. https://doi.org/10.1155/2020/8814196.
  • Zhu, Q., Yang, Y., Zhong, Y., Lao, Z., O’Neill, P., Hong, D., Zhang, K., Zhao, S. (2020). Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere, 254, 126779. https://doi.org/10.1016/j.chemosphere.2020.126779.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hücre ve Çekirdek Bölünmesi
Bölüm Biyoloji / Biology
Yazarlar

Pınar İli 0000-0002-3107-1798

Erken Görünüm Tarihi 20 Şubat 2024
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 12 Temmuz 2023
Kabul Tarihi 7 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA İli, P. (2024). Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi. Journal of the Institute of Science and Technology, 14(1), 75-86. https://doi.org/10.21597/jist.1326695
AMA İli P. Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2024;14(1):75-86. doi:10.21597/jist.1326695
Chicago İli, Pınar. “Tau-Fluvalinat İçerikli Bir İnsektisitin Sitotoksik Ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi”. Journal of the Institute of Science and Technology 14, sy. 1 (Mart 2024): 75-86. https://doi.org/10.21597/jist.1326695.
EndNote İli P (01 Mart 2024) Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi. Journal of the Institute of Science and Technology 14 1 75–86.
IEEE P. İli, “Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 1, ss. 75–86, 2024, doi: 10.21597/jist.1326695.
ISNAD İli, Pınar. “Tau-Fluvalinat İçerikli Bir İnsektisitin Sitotoksik Ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi”. Journal of the Institute of Science and Technology 14/1 (Mart 2024), 75-86. https://doi.org/10.21597/jist.1326695.
JAMA İli P. Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:75–86.
MLA İli, Pınar. “Tau-Fluvalinat İçerikli Bir İnsektisitin Sitotoksik Ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi”. Journal of the Institute of Science and Technology, c. 14, sy. 1, 2024, ss. 75-86, doi:10.21597/jist.1326695.
Vancouver İli P. Tau-fluvalinat İçerikli Bir İnsektisitin Sitotoksik ve Genotoksik Etkilerinin Allium Testi Kullanılarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):75-86.