Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)

Yıl 2023, , 2780 - 2789, 01.12.2023
https://doi.org/10.21597/jist.1330988

Öz

This study was carried out to make decision the antioxidant activity of the leaves of hawthorn (Crataegus monogyna), which is a natural source of antioxidants. For this purpose, the leaves of hawthorn were collected and dried, and an ethanol extract was prepared. Total antioxidant activity (with respect to the ferric thiocyanate method), ion reduction capacity of Cu2+ (copper method), and Fe3+ (potassium ferricyanide reduction method) were determined on the prepared ethanol extracts. Additionally, scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazyl) and determination of the total phenolic-flavonoid compound content were carry out. The extracts obtained from Hawthorn (Crataegus monogyna) leaves were found to inhibit lipid peroxidation (of linoleic acid emulsion) by 40.9%. This inhibition occurred at a concentration of 10 µg/mL of the extracts. At the similar concentration, BHT exhibited 68.3% inhibition, while trolox exhibited 29.9% inhibition. Hawthorn (Crataegus monogyna), which was found to have a higher total phenolic content than trolox, exhibited significant DPPH scavenging and metal reduction activities. During the investigation of the antioxidant activity of the ethanol extract obtained from Crataegus monogyna, α-tocopherol, its water-soluble analogue trolox and BHT (butylated hydroxytoluene) were utilized as reference antioxidant compounds.

Kaynakça

  • Aggul, A. G., Gulaboglu, M., Cetin, M., Ozakar, E., Ozakar, R. S., & Aydin, T. (2020). Effects of emulsion formulations of oleuropein isolated from ethanol extract of olive leaf in diabetic rats. Anais da Academia Brasileira de Ciências, 92.
  • Aggul, A.G., Demir, G.M. & Gulaboglu, M. (2022). Ethanol Extract of Myrtle (Myrtus communis L.) Berries as a Remedy for Streptozotocin-Induced Oxidative Stress in Rats. Appl Biochem Biotechnol, 194, 1645–1658.
  • Apak, R., Guclu K., Ozyurek, M., Karademir S.E., & Erca E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Science and Nutrition, 57, 292–304.
  • Aras, A., Dogru, M., & Bursal, E. (2016). Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 6(6), 758-765.
  • Aras, A., Bursal, E., Alan, Y., Turkan, F., Alkan, H., & Kılıç, Ö. (2018). Polyphenolic content, antioxidant potential and antimicrobial activity of Satureja boissieri. Iranian Journal of Chemistry and Chemical Engineering, 37(6), 209-219.
  • Atoui, A.K., Mansouri, A., Boskou, G., & Kefalas, P. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry, 89(1), 27-36.
  • Bar-Or, D., Bar-Or, R., Rael, L.T., & Brody, E.N. (2015). Oxidative stress in severe acute illness, Redox Biol., 4, 340-345.
  • Baytop T. (1999). Türkiye’de Bitkiler ile Tedavi, İstanbul: Savaş Cilt Evi, Nobel Tıp Kitabevleri, 146-147, 194-195
  • Blois, (1958). Antioxidant determinations by the use of a stable free radical, Nature, 26, 1199–1200.
  • Bursal, E. (2009). Kivi meyvesinin (Actinidia deliciosa) antioksidan ve antiradikal aktivitelerinin belirlenmesi, karbonik anhidraz enziminin saflaştırılması ve karakterizasyonu, (PhD Thesis, Atatürk University), Erzurum.
  • Caliskan, E. (2006). İğde çiçeği (Elaeagnus angustifolia) ve Kedi nanesi (Nepeta catoria) bitkilerinin antioksidan aktivitelerinin incelenmesi, (MSc. Thesis, Tokat University), Tokat.
  • Dalli, E., Milara, J., Cortijo, J., Morcillo, E.J., Cosin-Sales, J., & Sotillo, J.F. (2008).Hawthorn extract inhibits human isolated neutrophil functions’’, Pharmacologıcal Research, 445-450.
  • Demir, G. M., Gulaboglu, M., Aggul, A. G., Baygutalp, N. K., Canayakin, D., Halici, Z., & Suleyman, H. (2016). Antioxidant and antidiabetic activity of aqueous extract of Myrtus Communis L. berries on streptozotocin-induced diabetic rats. J. Pharm. Biol. Sci, 11(5), 11-16.
  • Gencaslan, G. (2007). Türkiye’de tıbbi amaçlı kullanılan bazı bitkilerin antioksidan etkilerinin taranması, (MSc. Thesis, Ankara University), Ankara.
  • Grune, T., Jung, T., Merker, K., & Davies, K.J.A. (2004). ‘’Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease’’, The International Journal of Biochemistry and Cell Biology, 36, 2519-2530.
  • Gomberg, M. (1900). An instance of trivalent carbon: triphenylmethyl. Journal of the American Chemical Society. 22(11), 757–771.
  • Gulcin, I., Oktay, M., Kirecci, E., & Küfrevioglu, Ö.İ. (2003). ‘’Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts’’, Food Chemistry, 83, 371–382.
  • Gulcin, I. (2005). The antioxidant and radical scavenging activities of black pepper (Piper Nigrum) seeds”, International Journal of Food Sciences and Nutrition, 56, 491-499.
  • Isık, M., Dikici, E., Tohma, H., & Koksal, E. (2017). Antioxidant Activity and Total Phenolic/Flavonoid Contents of Phlomis pungens L., Hacettepe J. Biol. & Chem., 2017, 45 (3), 425–433.
  • Kavaz, A., Isık, M., Dikici, E., & Yuksel, M. (2022). Anticholinergic, Antioxidant, and Antibacterial Properties of Vitex Agnus-CastusL. SeedExtract: Assessment of Its Phenolic Content by LC/MS/MS, Chem. Biodiversity, 19, e202200143.
  • Kilic, G. & Sengun, I.Y., (2023). Bioactive properties of Kombucha beverages produced with Anatolian hawthorn (Crataegus orientalis) and nettle (Urtica dioica) leaves, Food Bioscience, 53, 102631
  • Koksal, E. (2007). Karnabahar (Brassica oleracea L.) peroksidaz enziminin saflaştırılması ve karakterizasyonu, antioksidan ve antiradikal aktivitesinin belirlenmesi, (PhD Thesis, Atatürk University), Erzurum.
  • Koksal, E., Bursal, E., Dikici, E., Tozoglu F., & Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves, Journal of Medicinal Plants Research, Vol. 5(2), 217-222.
  • Liu, J.L., Yuan, J.F., & Zhang, Z.Q. (2010). Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus monogyna pinnatifida Bge.) fruit, Internatıonal Journal Of Food Scıence And Technology, 2400-2406.
  • Mavi, A. (2005). İnsan eritrosit ve lökositlerinden süperoksit dismutaz enziminin saflaştırılması ve bazı ilaçların enzim üzerine etkilerinin incelenmesi, (PhD Thesis, Atatürk University), Erzurum.
  • Mitsuda, H., Yasumoto, K., & Iwami K. (1966). Antioxidativ action of indole compounds during the autoxidation of linoleic acid, Eiyoto Shokuryo, 19, 210–214.
  • Park, Y., Choi, S., Hwang, S., & Lee, K. (2010). Changes of phenolics and antioxidant activity during hawthorn (Crataegus monogyna pinnatifida Bunge) fruit ripening’’, Planta Medica, 1276-1277.
  • Park, Y.K., Koo, M.H., Ikegaki, M., & Contado, J.L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil, Arquivos de Biologiae Technologia, 40, 97–106.
  • Perkins, L.A., Johnson, M.R., Melnick, M.B., & Perrimon, N. (1996). The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev. Biol. 180(1), 63-81.
  • Prakash, D., Upadhyay, G., Singh, B.N., & Singh, H.B. (2007). Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem., 104, 783-790.
  • Stoilova, I., Krastanov, A,. Stoyanova, A., Denev, P., & Gargova, S. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem., 102, 764-770.
  • Szweda, P.A., Friguet, B., & Szweda, L.I. (2002). Proteolysis, free radicals, and aging, Free Radical Biology and Medicine, 33, 29–36.
  • Vernon, L., Singleton, R. O., Rosa, M. & Lamuela-Raventós. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods in Enzymology, 299, 152-178.
  • Wang, H., Zhang, ZS., Guo, Y., Sun, P., Lv, XL., & Zuo, YB. (2011a). Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice, European Food Research And Technology, 743-751.
  • Wang, T., Zhang, P., Zhao, C.F., Zhang, Y., Liu, H., Hu, L.M., Gao, X.M., &Zhang, D.Q. (2011b). Prevention effect in selenite-induced cataract in vivo and antioxidative effects in vitro of crataegus monogyna pinnatifida leaves, Biological Trace Element Research, 106-116.
  • Yen, G.C. & Chen, H.Y. (1995).Antioxidant activity of various tea extracts in relation to their antimutagenicity, Journal of Agricaltural and Food Chemistry, 43, 27–32.
Yıl 2023, , 2780 - 2789, 01.12.2023
https://doi.org/10.21597/jist.1330988

Öz

Kaynakça

  • Aggul, A. G., Gulaboglu, M., Cetin, M., Ozakar, E., Ozakar, R. S., & Aydin, T. (2020). Effects of emulsion formulations of oleuropein isolated from ethanol extract of olive leaf in diabetic rats. Anais da Academia Brasileira de Ciências, 92.
  • Aggul, A.G., Demir, G.M. & Gulaboglu, M. (2022). Ethanol Extract of Myrtle (Myrtus communis L.) Berries as a Remedy for Streptozotocin-Induced Oxidative Stress in Rats. Appl Biochem Biotechnol, 194, 1645–1658.
  • Apak, R., Guclu K., Ozyurek, M., Karademir S.E., & Erca E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Science and Nutrition, 57, 292–304.
  • Aras, A., Dogru, M., & Bursal, E. (2016). Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 6(6), 758-765.
  • Aras, A., Bursal, E., Alan, Y., Turkan, F., Alkan, H., & Kılıç, Ö. (2018). Polyphenolic content, antioxidant potential and antimicrobial activity of Satureja boissieri. Iranian Journal of Chemistry and Chemical Engineering, 37(6), 209-219.
  • Atoui, A.K., Mansouri, A., Boskou, G., & Kefalas, P. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry, 89(1), 27-36.
  • Bar-Or, D., Bar-Or, R., Rael, L.T., & Brody, E.N. (2015). Oxidative stress in severe acute illness, Redox Biol., 4, 340-345.
  • Baytop T. (1999). Türkiye’de Bitkiler ile Tedavi, İstanbul: Savaş Cilt Evi, Nobel Tıp Kitabevleri, 146-147, 194-195
  • Blois, (1958). Antioxidant determinations by the use of a stable free radical, Nature, 26, 1199–1200.
  • Bursal, E. (2009). Kivi meyvesinin (Actinidia deliciosa) antioksidan ve antiradikal aktivitelerinin belirlenmesi, karbonik anhidraz enziminin saflaştırılması ve karakterizasyonu, (PhD Thesis, Atatürk University), Erzurum.
  • Caliskan, E. (2006). İğde çiçeği (Elaeagnus angustifolia) ve Kedi nanesi (Nepeta catoria) bitkilerinin antioksidan aktivitelerinin incelenmesi, (MSc. Thesis, Tokat University), Tokat.
  • Dalli, E., Milara, J., Cortijo, J., Morcillo, E.J., Cosin-Sales, J., & Sotillo, J.F. (2008).Hawthorn extract inhibits human isolated neutrophil functions’’, Pharmacologıcal Research, 445-450.
  • Demir, G. M., Gulaboglu, M., Aggul, A. G., Baygutalp, N. K., Canayakin, D., Halici, Z., & Suleyman, H. (2016). Antioxidant and antidiabetic activity of aqueous extract of Myrtus Communis L. berries on streptozotocin-induced diabetic rats. J. Pharm. Biol. Sci, 11(5), 11-16.
  • Gencaslan, G. (2007). Türkiye’de tıbbi amaçlı kullanılan bazı bitkilerin antioksidan etkilerinin taranması, (MSc. Thesis, Ankara University), Ankara.
  • Grune, T., Jung, T., Merker, K., & Davies, K.J.A. (2004). ‘’Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease’’, The International Journal of Biochemistry and Cell Biology, 36, 2519-2530.
  • Gomberg, M. (1900). An instance of trivalent carbon: triphenylmethyl. Journal of the American Chemical Society. 22(11), 757–771.
  • Gulcin, I., Oktay, M., Kirecci, E., & Küfrevioglu, Ö.İ. (2003). ‘’Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts’’, Food Chemistry, 83, 371–382.
  • Gulcin, I. (2005). The antioxidant and radical scavenging activities of black pepper (Piper Nigrum) seeds”, International Journal of Food Sciences and Nutrition, 56, 491-499.
  • Isık, M., Dikici, E., Tohma, H., & Koksal, E. (2017). Antioxidant Activity and Total Phenolic/Flavonoid Contents of Phlomis pungens L., Hacettepe J. Biol. & Chem., 2017, 45 (3), 425–433.
  • Kavaz, A., Isık, M., Dikici, E., & Yuksel, M. (2022). Anticholinergic, Antioxidant, and Antibacterial Properties of Vitex Agnus-CastusL. SeedExtract: Assessment of Its Phenolic Content by LC/MS/MS, Chem. Biodiversity, 19, e202200143.
  • Kilic, G. & Sengun, I.Y., (2023). Bioactive properties of Kombucha beverages produced with Anatolian hawthorn (Crataegus orientalis) and nettle (Urtica dioica) leaves, Food Bioscience, 53, 102631
  • Koksal, E. (2007). Karnabahar (Brassica oleracea L.) peroksidaz enziminin saflaştırılması ve karakterizasyonu, antioksidan ve antiradikal aktivitesinin belirlenmesi, (PhD Thesis, Atatürk University), Erzurum.
  • Koksal, E., Bursal, E., Dikici, E., Tozoglu F., & Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves, Journal of Medicinal Plants Research, Vol. 5(2), 217-222.
  • Liu, J.L., Yuan, J.F., & Zhang, Z.Q. (2010). Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus monogyna pinnatifida Bge.) fruit, Internatıonal Journal Of Food Scıence And Technology, 2400-2406.
  • Mavi, A. (2005). İnsan eritrosit ve lökositlerinden süperoksit dismutaz enziminin saflaştırılması ve bazı ilaçların enzim üzerine etkilerinin incelenmesi, (PhD Thesis, Atatürk University), Erzurum.
  • Mitsuda, H., Yasumoto, K., & Iwami K. (1966). Antioxidativ action of indole compounds during the autoxidation of linoleic acid, Eiyoto Shokuryo, 19, 210–214.
  • Park, Y., Choi, S., Hwang, S., & Lee, K. (2010). Changes of phenolics and antioxidant activity during hawthorn (Crataegus monogyna pinnatifida Bunge) fruit ripening’’, Planta Medica, 1276-1277.
  • Park, Y.K., Koo, M.H., Ikegaki, M., & Contado, J.L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil, Arquivos de Biologiae Technologia, 40, 97–106.
  • Perkins, L.A., Johnson, M.R., Melnick, M.B., & Perrimon, N. (1996). The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev. Biol. 180(1), 63-81.
  • Prakash, D., Upadhyay, G., Singh, B.N., & Singh, H.B. (2007). Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem., 104, 783-790.
  • Stoilova, I., Krastanov, A,. Stoyanova, A., Denev, P., & Gargova, S. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem., 102, 764-770.
  • Szweda, P.A., Friguet, B., & Szweda, L.I. (2002). Proteolysis, free radicals, and aging, Free Radical Biology and Medicine, 33, 29–36.
  • Vernon, L., Singleton, R. O., Rosa, M. & Lamuela-Raventós. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods in Enzymology, 299, 152-178.
  • Wang, H., Zhang, ZS., Guo, Y., Sun, P., Lv, XL., & Zuo, YB. (2011a). Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice, European Food Research And Technology, 743-751.
  • Wang, T., Zhang, P., Zhao, C.F., Zhang, Y., Liu, H., Hu, L.M., Gao, X.M., &Zhang, D.Q. (2011b). Prevention effect in selenite-induced cataract in vivo and antioxidative effects in vitro of crataegus monogyna pinnatifida leaves, Biological Trace Element Research, 106-116.
  • Yen, G.C. & Chen, H.Y. (1995).Antioxidant activity of various tea extracts in relation to their antimutagenicity, Journal of Agricaltural and Food Chemistry, 43, 27–32.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Doğal Ürünler ve Biyoaktif Bileşikler, Biyolojik Olarak Aktif Moleküller, Tıbbi ve Biyomoleküler Kimya (Diğer)
Bölüm Kimya / Chemistry
Yazarlar

Emrah Dikici 0000-0002-3086-8156

Ekrem Köksal 0000-0002-1026-972X

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 21 Temmuz 2023
Kabul Tarihi 20 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dikici, E., & Köksal, E. (2023). Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna). Journal of the Institute of Science and Technology, 13(4), 2780-2789. https://doi.org/10.21597/jist.1330988
AMA Dikici E, Köksal E. Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna). Iğdır Üniv. Fen Bil Enst. Der. Aralık 2023;13(4):2780-2789. doi:10.21597/jist.1330988
Chicago Dikici, Emrah, ve Ekrem Köksal. “Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)”. Journal of the Institute of Science and Technology 13, sy. 4 (Aralık 2023): 2780-89. https://doi.org/10.21597/jist.1330988.
EndNote Dikici E, Köksal E (01 Aralık 2023) Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna). Journal of the Institute of Science and Technology 13 4 2780–2789.
IEEE E. Dikici ve E. Köksal, “Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 4, ss. 2780–2789, 2023, doi: 10.21597/jist.1330988.
ISNAD Dikici, Emrah - Köksal, Ekrem. “Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)”. Journal of the Institute of Science and Technology 13/4 (Aralık 2023), 2780-2789. https://doi.org/10.21597/jist.1330988.
JAMA Dikici E, Köksal E. Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna). Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2780–2789.
MLA Dikici, Emrah ve Ekrem Köksal. “Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna)”. Journal of the Institute of Science and Technology, c. 13, sy. 4, 2023, ss. 2780-9, doi:10.21597/jist.1330988.
Vancouver Dikici E, Köksal E. Determination of Antioxidant Activity of The Leaves of Hawthorn (Crataegus Monogyna). Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):2780-9.