Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications

Yıl 2024, , 1094 - 1110, 01.09.2024
https://doi.org/10.21597/jist.1399068

Öz

In this article, an ultrathin (λ0/14.9), single layer, reflective type polarization converter for either linear-to-circular (LP-to-CP) or linear-to-linear (LP-to-LP) polarization conversion is reported. It has been demonstrated to achieve the LP-to-CP conversion at two separate frequency bands, including 11.52-11.84GHz and 19.83-20.01GHz. The circular polarization type is specified as a right-hand circular polarization (RHCP) for the first band and a left-hand circular polarization (LHCP) for the second band. In both of frequency bands, the metasurface structure reveals highly efficient features. Besides that, the metasurface structure exhibits highly efficient features within 3-dB bandwidths of 10.29-12.58GHz and 19.32-20.50GHz. Crucial parameters of polarization conversion such as ellipticity, axial ratio, and |Eco|/|Ecross| are confirmed to be in good agreement with another one. The metasurface structure's angular stability up to 200 oblique incidence angles makes it useful for beam scanning antennas. CST Microwave Studio program is utilized to carry out extensive simulations. This presented study offers a low cost, relatively high-performance, ultrathin polarization converter capable of linear-to-linear and circular polarization conversion in the X-, Ku-, and K-bands.

Kaynakça

  • Ahmad, T., Rahim, A.A., Bilal, R.M.H., Noor, A., Maab, H., Naveed, M.A., Madni, A., Ali, M.M., & Saeed, M.A. (2022). Ultrawideband cross-polarization converter using anisotropic reflective metasurface. Electronics, 11(3), 487.
  • Antoniades, M.A. and Eleftheriades, G.V. (2003). Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas and wireless propagation letters, 2, 103-106.
  • Balanis, C.A. (2005). Fundamental Parameters of Antennas, Antenna Theory: Analysis and Design. (27-104) John Wiley & Sons.
  • Bhattacharyya, S., Ghosh, S., & Srivastava, K.V. (2017). A wideband cross polarization conversion using metasurface. Radio Science, 52(11), 1395-1404.
  • Chen, H.T., Taylor, A.J., & Yu, N. (2016). A review of metasurfaces: physics and applications. Reports on progress in physics, 79(7), 076401.
  • Coskun, A., Hasar, U.C., Ozmen, A., & Ertugrul, M. (2022). Easy-to-Implement Ultra-Thin, Wide-Band, and Multi-Functional Polarization Converter for K and Ka Band Applications. Advanced Theory and Theory Simulations, 5(4), 2100543.
  • Couto, M.M., Silva, M.W.B., & Campos, A.L.P.S. (2021). A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface. Journal of Electromagnetic Waves and Applications, 35(12), 1652-1662.
  • Deng, G., Yu, Z., Yin, Z., Yang, J., & Li, Y. (2022). A miniaturized and wide-angle 3D metamaterial for reflective polarization conversion. Optical Materials, 133, 113017.
  • Faraz, Z., Kamal, B., Ullah, S., Aziz, A., & Kanwal, H. (2023). High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Optics Communications, 530, 129101.
  • Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115(10), 104503.
  • Guo, Y., Xu, J., Lan, C., & Bi, K. 2021. Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), pp.39-45.
  • Itoh, T. and Caloz, C. (2005). Definition of Metamaterials (MTMs) and Left-Handed (LH) MTMs, Electromagnetic metamaterials: transmission line theory and microwave applications. (1-3) John Wiley & Sons.
  • Khan, M.I., Khalid, Z. and Tahir, F.A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., & Wang, Z. (2019). Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves. Applied Physics A, 125, 1-8.
  • Lu, J., Cao, X., Gao, J., Zhiyun, Z., & Li, S. (2021). Low RCS Reflective Polarization Conversion Metasurface. In: 2021 International Conference on Microwave and Millimeter Wave Technology ICMMT (1-3). Nanjing, China. https://ieeexplore.ieee.org/abstract/document/9618050
  • Ma, H.F., Wang, G.Z., Kong, G.S., & Cui, T.J. (2014). Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Optical Materials Express, 4(8), 1717-1724.
  • Mao, C., Yang, Y., He, X., Zheng, J., & Zhou, C. (2017). Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface. Applied Physics A, 123, 1-6.
  • Mutlu, M., Akosman, A.E., Serebryannikov, A.E., & Ozbay, E. (2011). Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optics letters, 36(9), 1653-1655.
  • Nama, L., Bhattacharyya, S., & Jain, P.K. (2021). A metasurface-based, ultrathin, dual-band, linear-to-circular, reflective polarization converter: easing uplinking and downlinking for wireless communication. IEEE Antennas and Propagation Magazine, 63(4), 100-110.
  • Nguyen, T.Q.H., Nguyen, T.K.T., Nguyen, T.Q.M., Cao, T.N., Phan, H.L., Luong, N.M., Le, D.T., Bui, X.K., Truong, C.L., & Vu, D.L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • Shi, Z., Khorasaninejad, M., Huang, Y.W., Roques-Carmes, C., Zhu, A.Y., Chen, W.T., Sanjeev, V., Ding, Z.W., Tamagnone, M., Chaudhary, K., & Devlin, R.C. (2018). Single-layer metasurface with controllable multiwavelength functions. Nano letters, 18(4), 2420-2427.
  • Teber, A. (2024). Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku-and K-Band Applications. Gazi University Journal of Science, 37(2), 774-791.
  • Urul, B., Doğan, H., Başyiğit, I. B., & Genç, A. (2022). A novel broadband double-ring holed element metasurface absorber to suppress EMI from PCB heatsinks. Journal of Electrical Engineering and Computer Sciences,30(6), 2254-2267.
  • Xu, J., Li, R., Wang, S., & Han, A.T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • Zhang, B., Yang, X., & Liu, X. (2024). Linear to circular polarization converter using ultrathin and Bi-functional metasurface. Applied Physics A, 130(6), 1-11.
  • Zhang, Z., Cao, X., Gao, J., & Li, S. (2016). Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators. Radioengineering, 25(3), 436-441.
  • Zhang, H., Zhang, F., Sun, F., Heng, Y., & Su, J. (2019). Wideband Circularly Polarized Applications: Design of a compact, traveling-wave-fed loop antenna. IEEE Antennas and Propagation Magazine, 62(1), 34-39.
  • Zheng, Q., Guo, C., & Ding, J. (2018). Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas and Wireless Propagation Letters, 17(8), 1459-1463.
Yıl 2024, , 1094 - 1110, 01.09.2024
https://doi.org/10.21597/jist.1399068

Öz

Kaynakça

  • Ahmad, T., Rahim, A.A., Bilal, R.M.H., Noor, A., Maab, H., Naveed, M.A., Madni, A., Ali, M.M., & Saeed, M.A. (2022). Ultrawideband cross-polarization converter using anisotropic reflective metasurface. Electronics, 11(3), 487.
  • Antoniades, M.A. and Eleftheriades, G.V. (2003). Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas and wireless propagation letters, 2, 103-106.
  • Balanis, C.A. (2005). Fundamental Parameters of Antennas, Antenna Theory: Analysis and Design. (27-104) John Wiley & Sons.
  • Bhattacharyya, S., Ghosh, S., & Srivastava, K.V. (2017). A wideband cross polarization conversion using metasurface. Radio Science, 52(11), 1395-1404.
  • Chen, H.T., Taylor, A.J., & Yu, N. (2016). A review of metasurfaces: physics and applications. Reports on progress in physics, 79(7), 076401.
  • Coskun, A., Hasar, U.C., Ozmen, A., & Ertugrul, M. (2022). Easy-to-Implement Ultra-Thin, Wide-Band, and Multi-Functional Polarization Converter for K and Ka Band Applications. Advanced Theory and Theory Simulations, 5(4), 2100543.
  • Couto, M.M., Silva, M.W.B., & Campos, A.L.P.S. (2021). A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface. Journal of Electromagnetic Waves and Applications, 35(12), 1652-1662.
  • Deng, G., Yu, Z., Yin, Z., Yang, J., & Li, Y. (2022). A miniaturized and wide-angle 3D metamaterial for reflective polarization conversion. Optical Materials, 133, 113017.
  • Faraz, Z., Kamal, B., Ullah, S., Aziz, A., & Kanwal, H. (2023). High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Optics Communications, 530, 129101.
  • Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115(10), 104503.
  • Guo, Y., Xu, J., Lan, C., & Bi, K. 2021. Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), pp.39-45.
  • Itoh, T. and Caloz, C. (2005). Definition of Metamaterials (MTMs) and Left-Handed (LH) MTMs, Electromagnetic metamaterials: transmission line theory and microwave applications. (1-3) John Wiley & Sons.
  • Khan, M.I., Khalid, Z. and Tahir, F.A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., & Wang, Z. (2019). Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves. Applied Physics A, 125, 1-8.
  • Lu, J., Cao, X., Gao, J., Zhiyun, Z., & Li, S. (2021). Low RCS Reflective Polarization Conversion Metasurface. In: 2021 International Conference on Microwave and Millimeter Wave Technology ICMMT (1-3). Nanjing, China. https://ieeexplore.ieee.org/abstract/document/9618050
  • Ma, H.F., Wang, G.Z., Kong, G.S., & Cui, T.J. (2014). Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Optical Materials Express, 4(8), 1717-1724.
  • Mao, C., Yang, Y., He, X., Zheng, J., & Zhou, C. (2017). Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface. Applied Physics A, 123, 1-6.
  • Mutlu, M., Akosman, A.E., Serebryannikov, A.E., & Ozbay, E. (2011). Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optics letters, 36(9), 1653-1655.
  • Nama, L., Bhattacharyya, S., & Jain, P.K. (2021). A metasurface-based, ultrathin, dual-band, linear-to-circular, reflective polarization converter: easing uplinking and downlinking for wireless communication. IEEE Antennas and Propagation Magazine, 63(4), 100-110.
  • Nguyen, T.Q.H., Nguyen, T.K.T., Nguyen, T.Q.M., Cao, T.N., Phan, H.L., Luong, N.M., Le, D.T., Bui, X.K., Truong, C.L., & Vu, D.L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • Shi, Z., Khorasaninejad, M., Huang, Y.W., Roques-Carmes, C., Zhu, A.Y., Chen, W.T., Sanjeev, V., Ding, Z.W., Tamagnone, M., Chaudhary, K., & Devlin, R.C. (2018). Single-layer metasurface with controllable multiwavelength functions. Nano letters, 18(4), 2420-2427.
  • Teber, A. (2024). Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku-and K-Band Applications. Gazi University Journal of Science, 37(2), 774-791.
  • Urul, B., Doğan, H., Başyiğit, I. B., & Genç, A. (2022). A novel broadband double-ring holed element metasurface absorber to suppress EMI from PCB heatsinks. Journal of Electrical Engineering and Computer Sciences,30(6), 2254-2267.
  • Xu, J., Li, R., Wang, S., & Han, A.T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • Zhang, B., Yang, X., & Liu, X. (2024). Linear to circular polarization converter using ultrathin and Bi-functional metasurface. Applied Physics A, 130(6), 1-11.
  • Zhang, Z., Cao, X., Gao, J., & Li, S. (2016). Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators. Radioengineering, 25(3), 436-441.
  • Zhang, H., Zhang, F., Sun, F., Heng, Y., & Su, J. (2019). Wideband Circularly Polarized Applications: Design of a compact, traveling-wave-fed loop antenna. IEEE Antennas and Propagation Magazine, 62(1), 34-39.
  • Zheng, Q., Guo, C., & Ding, J. (2018). Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas and Wireless Propagation Letters, 17(8), 1459-1463.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyo Frekansı Mühendisliği, Elektronik,Optik ve Manyetik Malzemeler
Bölüm Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Yazarlar

Seher Şeyma Arslan Madak 0009-0009-5795-8221

Ahmet Teber 0000-0002-7361-2302

Ramazan Topkaya 0000-0002-5376-0199

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 18 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Arslan Madak, S. Ş., Teber, A., & Topkaya, R. (2024). Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications. Journal of the Institute of Science and Technology, 14(3), 1094-1110. https://doi.org/10.21597/jist.1399068
AMA Arslan Madak SŞ, Teber A, Topkaya R. Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2024;14(3):1094-1110. doi:10.21597/jist.1399068
Chicago Arslan Madak, Seher Şeyma, Ahmet Teber, ve Ramazan Topkaya. “Ultra-Thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications”. Journal of the Institute of Science and Technology 14, sy. 3 (Eylül 2024): 1094-1110. https://doi.org/10.21597/jist.1399068.
EndNote Arslan Madak SŞ, Teber A, Topkaya R (01 Eylül 2024) Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications. Journal of the Institute of Science and Technology 14 3 1094–1110.
IEEE S. Ş. Arslan Madak, A. Teber, ve R. Topkaya, “Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 3, ss. 1094–1110, 2024, doi: 10.21597/jist.1399068.
ISNAD Arslan Madak, Seher Şeyma vd. “Ultra-Thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications”. Journal of the Institute of Science and Technology 14/3 (Eylül 2024), 1094-1110. https://doi.org/10.21597/jist.1399068.
JAMA Arslan Madak SŞ, Teber A, Topkaya R. Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1094–1110.
MLA Arslan Madak, Seher Şeyma vd. “Ultra-Thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications”. Journal of the Institute of Science and Technology, c. 14, sy. 3, 2024, ss. 1094-10, doi:10.21597/jist.1399068.
Vancouver Arslan Madak SŞ, Teber A, Topkaya R. Ultra-thin Polarization Converter Using Single Layer Metasurface for X-, Ku-, and K-Band Applications. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(3):1094-110.