Araştırma Makalesi
BibTex RIS Kaynak Göster

On Oresme Numbers and Their Geometric Interpretations

Yıl 2024, , 1291 - 1300, 01.09.2024
https://doi.org/10.21597/jist.1421298

Öz

In this study, we examined the Oresme sequences defined by Nicole Oresme. We examined the geometric interpretation of Oresme sequences with rational coefficients which are defined by A.F. Horadam as with initial conditions and . We defined the the vector of the Oresme sequence. We calculated the area and volume. We gave the general solution for four squares equation involving Oresme vectors. We calculated the Heron Formula of Oresme sequences. We defined the angle value between these sequences. We also obtained a relationship between the Oresme sequence and the generalized Fibonacci sequence in vector space. We calculated the area and volume of these sequence. We obtained important definitions and theorems for these sequences.

Destekleyen Kurum

Pamukkale University, Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2023FEBE002

Teşekkür

This work was supported by Scientific Research Projects (BAP) Coordination Unit of Pamukkale University. Project No. 2023FEBE002.

Kaynakça

  • Atanassov K., 2002. New visual perspectives on Fibonacci numbers. World Scientific.
  • Cetinberk K., Yuce, S., 2020. On Fibonacci Vectors. Hagia Sophia Journal of Geometry, 2(2), 12-25.
  • Cook C. K., 2004. Some sums related to sums of Oresme numbers. In Applications of Fibonacci.
  • Halici S., Gur Z., 2023. On Some Derivatives of k- Oresme Polynomials. Bulletin of The International Mathematical Virtual Institute, 13(1), 41-50.
  • Halici S., Gur Z., Sayin E., 2022. k- Oresme Polynomials and Their Derivatives, Third International Conference on Mathematics and Its Applications in Science and Engineering, Bucharest, Romania, 4-7 July. Hilton P., Pedersen J., 1994. A note on a geometrical property of Fibonacci numbers, The Fibanacci Quarterly, 32, 386-388.
  • Horadam A. F., 1965. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly 3(3), 161–176.
  • Horadam A. F., 1974. Oresme Numbers, The Fibonacci Quarterly 12(3), 267– 271.
  • Kızılates C., 2021. New families of Horadam numbers associated with finite operators and their applications. Mathematical Methods in the Applied Sciences, 44(18), 14371-14381.
  • Munarini E., 1997. A combinatorial interpretation of the generalized Fibonacci numbers. Advances in Applied Mathematics, 19(3), 306-318.
  • Numbers and Their Applications , 87-99.
  • Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci.
  • Oresme N., 1961. Quaestiones super geometriam Euclidis, ed. by HLL Busard, 2 Vols.
  • Salter E., 2005. Fibonacci Vectors. Graduate Theses and Dissertations, University of South Florida, USA.
Yıl 2024, , 1291 - 1300, 01.09.2024
https://doi.org/10.21597/jist.1421298

Öz

Proje Numarası

2023FEBE002

Kaynakça

  • Atanassov K., 2002. New visual perspectives on Fibonacci numbers. World Scientific.
  • Cetinberk K., Yuce, S., 2020. On Fibonacci Vectors. Hagia Sophia Journal of Geometry, 2(2), 12-25.
  • Cook C. K., 2004. Some sums related to sums of Oresme numbers. In Applications of Fibonacci.
  • Halici S., Gur Z., 2023. On Some Derivatives of k- Oresme Polynomials. Bulletin of The International Mathematical Virtual Institute, 13(1), 41-50.
  • Halici S., Gur Z., Sayin E., 2022. k- Oresme Polynomials and Their Derivatives, Third International Conference on Mathematics and Its Applications in Science and Engineering, Bucharest, Romania, 4-7 July. Hilton P., Pedersen J., 1994. A note on a geometrical property of Fibonacci numbers, The Fibanacci Quarterly, 32, 386-388.
  • Horadam A. F., 1965. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly 3(3), 161–176.
  • Horadam A. F., 1974. Oresme Numbers, The Fibonacci Quarterly 12(3), 267– 271.
  • Kızılates C., 2021. New families of Horadam numbers associated with finite operators and their applications. Mathematical Methods in the Applied Sciences, 44(18), 14371-14381.
  • Munarini E., 1997. A combinatorial interpretation of the generalized Fibonacci numbers. Advances in Applied Mathematics, 19(3), 306-318.
  • Numbers and Their Applications , 87-99.
  • Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci.
  • Oresme N., 1961. Quaestiones super geometriam Euclidis, ed. by HLL Busard, 2 Vols.
  • Salter E., 2005. Fibonacci Vectors. Graduate Theses and Dissertations, University of South Florida, USA.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Matematik / Mathematics
Yazarlar

Serpil Halıcı 0000-0002-8071-0437

Elifcan Sayın 0000-0001-5602-7681

Proje Numarası 2023FEBE002
Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 17 Ocak 2024
Kabul Tarihi 2 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Halıcı, S., & Sayın, E. (2024). On Oresme Numbers and Their Geometric Interpretations. Journal of the Institute of Science and Technology, 14(3), 1291-1300. https://doi.org/10.21597/jist.1421298
AMA Halıcı S, Sayın E. On Oresme Numbers and Their Geometric Interpretations. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2024;14(3):1291-1300. doi:10.21597/jist.1421298
Chicago Halıcı, Serpil, ve Elifcan Sayın. “On Oresme Numbers and Their Geometric Interpretations”. Journal of the Institute of Science and Technology 14, sy. 3 (Eylül 2024): 1291-1300. https://doi.org/10.21597/jist.1421298.
EndNote Halıcı S, Sayın E (01 Eylül 2024) On Oresme Numbers and Their Geometric Interpretations. Journal of the Institute of Science and Technology 14 3 1291–1300.
IEEE S. Halıcı ve E. Sayın, “On Oresme Numbers and Their Geometric Interpretations”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 3, ss. 1291–1300, 2024, doi: 10.21597/jist.1421298.
ISNAD Halıcı, Serpil - Sayın, Elifcan. “On Oresme Numbers and Their Geometric Interpretations”. Journal of the Institute of Science and Technology 14/3 (Eylül 2024), 1291-1300. https://doi.org/10.21597/jist.1421298.
JAMA Halıcı S, Sayın E. On Oresme Numbers and Their Geometric Interpretations. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1291–1300.
MLA Halıcı, Serpil ve Elifcan Sayın. “On Oresme Numbers and Their Geometric Interpretations”. Journal of the Institute of Science and Technology, c. 14, sy. 3, 2024, ss. 1291-00, doi:10.21597/jist.1421298.
Vancouver Halıcı S, Sayın E. On Oresme Numbers and Their Geometric Interpretations. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(3):1291-300.