Derleme
BibTex RIS Kaynak Göster

Atık Sulardan Ağır Metal Giderimi

Yıl 2024, , 1684 - 1704, 01.12.2024
https://doi.org/10.21597/jist.1431006

Öz

Ağır metaller, toksisiteleri, atmosferde uzun ömürleri ve biyokonsantrasyon yoluyla insan vücudunda birikebilmeleri nedeniyle iyi bilinen çevre kirleticilerdir. Ağır metallerin çoğu doğal olarak oluşur, ancak bazıları antropojenik kaynaklardan elde edilir. Ağır metaller büyük atom ağırlıklarına sahiptir ve canlı organizmalar için oldukça toksiktir. Birçok ağır metal çevre ve hava kirliliğine neden olabilir ve insanlar için ölümcül olabilir. Ağır metaller su, toprak ve hava gibi çeşitli çevresel unsurlarla karıştığında oldukça zehirlidir ve insanlar ve diğer organizmalar besin zinciri yoluyla ağır metallere maruz kalabilir. Birikim sonucu, canlıların bünyesinde yoğunlaşan bu metaller, tiroit, nörolojik, otizm ve kısırlık gibi hastalıklara neden olabilirler. Temiz bir çevre ve insan sağlığı açısından ağır metal iyonlarının atık sulardan uzaklaştırılması büyük önem taşımaktadır. Sanayileşme, iklim değişikliği ve kentleşme nedeniyle su ortamındaki ağır metal kirliliği artıyor. Kirlilik kaynakları arasında madencilik atıkları, çöp sızıntıları, belediye ve endüstriyel atık sular, kentsel akıntılar ve volkanik patlamalar, hava koşulları ve kaya aşınması gibi doğal olaylar yer alır. Ağır metal iyonları toksiktir, potansiyel olarak kanserojendir ve biyolojik sistemlerde biyolojik olarak birikebilir. Çeşitli atık su kaynaklarından ağır metal iyonlarının uzaklaştırılması için farklı yöntemler vardır. Bu yöntemler adsorpsiyon, kimyasal, elektrokimyasal ayırma işlemleri, iyon değişimi, çökeltme, nanofiltrasyon, ultrafiltrasyon, ters ozmoz vb. işlemler olarak sınıflandırılabilir. Genel olarak son yıllardaki çalışmaların çoğunun adsorpsiyon teknikleri üzerine yoğunlaştığı görülmektedir. Kimyasal ve membran yöntemleri pratik olmasına rağmen, büyük hacimli çamur oluşumu ve arıtma sonrası gereksinimler, kimyasal teknikler için çözülmesi gereken hayati konulardır. Gelecekteki araştırma çalışmaları çevre dostu olmalı, uygun maliyetli ve sürdürülebilir malzeme ve yöntemlere odaklanmalıdır. Bu derleme, ağır metallerin uzaklaştırılması için su arıtımına ilişkin multidisipliner araştırmalar dikkate alınarak, ağır metallerin uzaklaştırılması için kullanılan ana teknolojiler ve malzemeler hakkında, ağır metallerin atık sulardan nasıl giderildiğini incelenmeyi amaçlamıştır.

Kaynakça

  • Abdulla, S. Jamil, D. Aziz, K. (2020). IOP Conference Series: Earth and Environmental Science, 612, 012023.
  • Abdelfattah, I., Ismail, A.A.,Al Sayed, F., Almedolab, A., Aboelghait, K. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environ. Nanotechnol. Monit. Manag, 6, 176-183.
  • Acar B. Ç., Acar M. B. (2022). Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
  • Ahmad, A.L., Ooi, B.S. (2010). A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem Eng J, 56:257-263.
  • Al-Asheh, S., Aidan, A. (2021). A Comprehensive Method of Ion Exchange Resins Regeneration and Its Optimization for Water Treatment. IntechOpen. doi: 10.5772/intechopen.93429
  • AL-Othman, Z.A., Ali, R., Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J, 184, 238-247.
  • Ali, A., Sadia, M., Azeem, M., Ahmad, M. Z., Umar, M., Ul Abbas, Z. (2023). Ion Exchange Resins and their Applications in Water Treatment and Pollutants Removal from Environment: A Review : Ion Exchange Resins and their Applications. Futuristic Biotechnology, 3(03), 12-19.
  • Ali, E., Das, R., Maamor, A., Hamid, S.B.A. (2013). Multifunctional Carbon Nanotubes (CNTs): A New Dimension in Environmental Remediation. Adv. Mater. Res, 832, 328-332.
  • Aliplik Akın, B. (2010) Şeker endüstrisi atıksularının kimyasal koagülasyon yöntemiyle arıtılabilirliğinin incelenmesi ve optimum işletim koşullarının belirlenmesi/Investigation of treatment of the sugar industrial wastewaters by chemical coagulation method and determination of optimum operating conditions, Yüksek lisans tezi, Ankara Üniversitesi / Fen Bilimleri Enstitüsü / Kimya Mühendisliği Ana Bilim Dalı.
  • Al-Jobory, A.A.S., Yücel, U.M. (2019). Analysis of some heavy metals accumulation in water, sediment and tissues of different fish species from the razzaza lake, Iraq. Fresenius Environ Bullet, 28(7), 5041-5051
  • Alqadami, A.A., Naushad. M., Abdalla, M.A., Ahamad, T., ALOthman, Z.A., Alshehri, S.M., Ghfar, A.A. (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod, 156, 426-436.
  • Anonim, https://www.mmo.org.tr/sites/default/files/015son.pdf/26.06.2024
  • Anonim, https://www.chemtreat.com/coagulants-flocculants/26.06.2024
  • Anonim, https://www.zema.com.tr/elektro-koagulasyon/26.06.2024
  • Arunlertaree, C., Kaewsomboon, W., Kumsopa, A., Pokethitiyook, P., Panyawathanakit, P. (2007). Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol, 29, 857-868.
  • Atasoy, N., Mercan, U., Alacabey, I., Kul, A.R. (2011). Levels of heavy metals and certain macro elements in potable and tap water at Van City Center. Hacettepe J Biol Chem, 39, 391-96.
  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 12, 643972.
  • Barakat, M.A. (2011). New trends in removing heavy metals from industrial wastewater. Arab J Chem, 4, 361-377.
  • Barick, A., Tripathy, D.K. (2011). Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater. Sci. Eng. B, 176, 1435-1447.
  • Baysal, A., Ozbek, N., Akman, S. (2013). Determination of trace metals in waste water and their removal processes. Waste Water-Treatment Technologies and Recent Analytical Developments, 1, 145-171.
  • Beauvais, R.A., Alexandratos, S. D. (1998). Polymer-supported reagents for the selective complexation of metal ions: An overview. React Funct Polym, 36, 113-123.
  • Belkacem, M., Khodir, M., Abdelkrim, S. (2008). Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalinatio, 228, 245-254.
  • Berradi, M., Chabab, Z., Arroub, H., Nounah, H., Harfi, A.E. (2014). Optimization of the coagulation/flocculation process for the treatment of industrial wastewater from the hot dip galvanizing of steel. J. Mater. Environ. Sci., 5 (2), 360-365.
  • Bratjer, K.., Dabek-Zlotorzynska, E. (1990). Separation of Metal Ions on a Modified Aluminum Oxide. Talanta, 37-613.
  • BrbootI, M.M., Abid, B.A., Al-ShuwaikI, N. M. (2011). Removal of heavy metals using chemicals precipitation. Eng Technol J, 29, 595-612.
  • Chen, L., Li, Z., Li, W., Chen, Z., Chen, G., Yang, W., Zhang, X., Liu, X. (2021). Investigation of adsorption kinetics and the isotherm mechanism of manganese by modified Diatomite. ACS Omega, 6, 16402-16409
  • Choumane, R., & Peulon, S. (2022). Innovative electrochemical process for a total removal and/or separation of soluble heavy metals. Journal of Environmental Chemical Engineering, 10(6), 108607
  • Chojnacka, K., Chojnacki, A., Górecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, 147-153.
  • Cséfalvay E, Pauer V, Mizsey P (2009) Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination, 240:132-142.
  • Çınar Acar, B., & Acar, M. B. (2022). Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
  • Das, R., Ali, E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97-109.
  • Demir, E., Yalçın, H. (2014). Adsorbentler: Sınıflandırma, Özellikler, Kullanım ve Öngörüler. Türk Bilimsel Derlemeler Dergisi, 7(2), 70-79.
  • Escudero, L.B., Quintas, P.Y., Wuilloud, R.G., Dotto, G.L. (2018). Green Adsorbents for Pollutant Removal. Springer; Cham, Switzerland. Biosorption of metals and metalloids, 35-86.
  • Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res, 44:97-104.
  • Filibeli, A. ve Büyükkamacı, M.. (2002), Karasuyun Anaeobik Yöntemlerle Arıtılabilirliğinin Değerlendirilmesi, I. Zeytinyağı Üretiminde Çevre Sorunları ve Çözümleri Uluslararası Çalıştayı Bildiriler Kitabı, 67-77, Balıkesir.
  • Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418.
  • Goel, N., Sharma, V. (2012). Carbon Nanotubes: A New Era in Mechanical Engineering–A Review. Int. J. Appl. Eng. Res, 7, 1623-1626.
  • Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics, Journal of Industrial and Engineering Chemistry, 30, 14-19.
  • Gupta, V.K., Ali, I., Saleh, T.A., Nayaka, A., Agarwal, S. (2012). Chemical treatment technologies for wastewater recycling-an overview. The Royal Society of Chemistry, 2, 6380-6388.
  • Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski, A., & Mishra, P. K. (2021). A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials, 14(16).
  • Ghorai, S., Sarkar, A.K., Pal, S. (2014). Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresour Technol, 170, 578-582.
  • Han, W., Fu F., Cheng Z., Tang B., Wu S. (2016). Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J Hazard Mater, 302, 437-446.
  • Horsfall, M., Abia, A.A., Spiff, AI. (2006). Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol, 97, 283-291.
  • Howe, K.J., Hand, D.W., Crittenden, J.C, Trussell, R.R. (2012). Water purification principles. Hoboken, New Jersey: John Wiley & Sons Inc.
  • Huang, J., Qi, F., Zeng, G., Shi, L., Li, X., Gu, Y., & Shi, Y. (2017). Repeating recovery and reuse of SDS micelles from MEUF retentate containing Cd2+ by acidification UF. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 361-368.
  • Hughes, M.F. (2006). Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect, 114, 1790-1796.
  • İnce, M., Kaplan-İnce, O. (2019). Heavy Metal Removal Techniques Using Response Surface Methodology: Water/Wastewater Treatment. Toxicity of Nanomaterials, 1, 1-15
  • Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q. (2015). Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci, 16, 29592-29630.
  • Jaishankar, M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol, 7,60.
  • Jagwani, M., Dohare, E.D. (2018). Electro Coagulation Applications in Water and Wastewater Treatment: A Review. International Journal of Scientific & Engineering Research, 9, 1430-1436.
  • Jaya Rajan, M., Indira Anish, C. (2024). Role of Activated Carbon in Water Treatment. IntechOpen. doi: 10.5772/intechopen.108349
  • Jianlong, W. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem, 37, 847-850.
  • Jiao GJ, Ma J, Li Y, Jin D, Zhou J, Sun R. (2022). Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. J Hazard Mater. 5,421-126722.
  • Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z., Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, J. Environ. Sci., 21, 539-544.
  • Kantipuly, C., Katragadda S., Chow A., Gesser H.D. (1990). Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta, 37, 491-517.
  • Kandah, M.I., Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater, 146, 283-288.
  • Karnitz, O., Jr., Gurgel, L.V.A., De Melo, J.C.P., Botaro, V.R., Melo, T.M.S., de Freitas Gil, R.P., Gil, L.F. (2007). Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol, 98, 1291-1297.
  • Koedrith, P., Kim, H., Weon, J.-I., Seo, Y.R. (2013). Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health, 216, 587-598.
  • Koyuncu, T., Kural, E. ve Topacık D., 2001, Pilot scale nanofiltration membrane seperation for waste management in textile indstry, Water Science and Tecnology, 43 (10), 223-240 p.
  • Kuo, C.Y., Lin, H.Y. (2009). Adsorption of aqueous cadmium (II) onto modified multiwalled carbon nanotubes following microwave/chemical treatment, Desalination, 249, 792-796.
  • Kumar, B., Smita, K., Sánchez, E., Stael, C., Cumbal, L. (2016). Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecol Eng, 93, 152-158.
  • Küçükçongar, S., Sevimli, M.F. (2013). Natural Organic Matter (NOM) Removal by Coagulation and Adsorption. Journal of Selcuk University Natural and Applied Science, 2, 268-277.
  • Khan, A.A., Naqvi, S.R., Ali, I., Arshad, M., AlMohamadi, H., Sikandar, U. (2023). Algal-derived biochar as an efficient adsorbent for removal of Cr (VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. Chemosphere, 316, 137826.
  • Li, Y.H., Liu, F.Q., Xia, B., Du, Q.J., Zhang, P., Wang, D.C., Wang, Z.H., Xia, Y.Z. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites, J. Hazard. Mater, 177, 876-880.
  • Lim, J.T., Tan, Y.Q., Valeri, L., Lee, J., Geok, P.P., Chia S.E., Ong, C.N., Seow, W.J. (2019). Association between serum heavy metals and prostate cancer risk – A multiple metal analysis. Environment International, 132, 105-109.
  • Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G., Li, X. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater, 186, 481-490.
  • Mao, M., Yan, T., Shen, J., Zhang, J., Zhang, D. (2021). Capacitive Removal of Heavy Metal Ions from Wastewater via an Electro-Adsorption and Electro-Reaction Coupling Process. Environmental Science & Technology, 55, 3333-3334.
  • Maity, S., Patil, P.B., SenSharma, S.,Sarkar, A. (2022). Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. Chemosphere, 307, 136115.
  • Mishra, J., Saini, R., Singh, D. (2021). Review paper on removal of heavy metal ions from industrial wastewater effluents, IOP Conf. Sherry. Material science and engineering, 1168, 012027.
  • Meunier, N., Drogui, P., Montan´e, C., Hausler, R., Blais, J.F., Mercier, G. (2006). Heavy metals removal from acidic and saline soil leachate using either electrochemical coagulation or chemical precipitation, J Environ Eng, 132, 545-554.
  • Mercan Yücel, U. (2022). Determination of Aflatoxin and Heavy Metal Levels in Some Spices Sold as Unpackaged in Van Province and Health Risks Assessment of Heavy Metals. Balıkesir Sağlık Bilimleri Dergisi, 11(Supplement 1), 7-14.
  • Mercan U. Yücel, Atasoy N. (2019). Comparision of sample preparation methods for determination of heavy metals in cattle hair by ICP-OES. Fresenius Environ Bull, 28, 9620-9626.
  • Mezine, Z., Kadri, A., Hamadou, L., Benbrahim, N., & Chaouchi, A. (2018). Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 817, 36-47.
  • Morais, S., Costa, F.G., Pereira, M.D.L. (2012). Heavy metals and human health. Environ Health Emerg Issues Pract,10, 227-245.
  • Mohammed A. A., Mahmood, H. S. (2013). Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin ” Journal of Engineering, 19(10), 1327-1340.
  • Mustapha, S., Shuaib, D., Ndamitso, M., Etsuyankpa, M., Sumaila, A., Mohammed, U., Nasirudeen, M. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci, 9, 142.
  • Naushad, M., Vasudevan, S., Sharma, G., Kumar, A., Alothman, Z.A. (2016). Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat, 57, 18551-18559.
  • Naushad, M., Ahamad, T., Al-Maswari, .BM., Alqadami, A.A., Alshehri, S.M. (2017). Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J, 330, 1351-1360.
  • Nguyen, C.M., Bang, S., Cho, J., Kim, K.W. (2009). Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination, 245:82-94.
  • Özbolat, G., Tuli, A. (2016). Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi, 25(4), 502-521.
  • Özyonar, F., Karagözoğlu,B. (2012). “Elektrokoagülasyon prosesi ile tekstil sanayi atıksuyunun arıtımı,” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 29-37.
  • Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, (4), 36-41.
  • Pang, F.M., Kumar, P., Teng, T.T., Omar A.K.M., Wasewar, K.L. (2011). Removal of lead, zinc and iron by coagulation–flocculation. Journal of the Taiwan Institute of Chemical Engineers, 42, 809-815.
  • Pillay, K., Cukrowska, E.M., Coville, N.J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater, 166, 1067-1075.
  • Rao, G.P., Lu, C., Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol, 58, 224-231.
  • Rahmati, N. O., Pourafshari Chenar, M. Azizi Namaghi, H. (2017). Removal of free active chlorine from synthetic wastewater by MEUF process using polyethersulfone/titania nanocomposite membrane. Sep Purif Technol, 181, 213-222.
  • Raj, A., Yadav, A., Rawat, A.P., Singh, A.K., Kumar, S., Pandey, A.K., Sirohi, R., Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology&Innovation, 23, 101556.
  • Ravelli, D., Merli, D., Quartarone, E., Profumo, A., Mustarelli, P., Fagnoni, M. (2013). PEGylated carbon nanotubes: Preparation, properties and applications. RSC Adv, 3, 13569-13582.
  • Raval, N.P., Shah, P.U., Shah, N.K. (2016). Adsorptive removal of nickel (II) ions from aqueous environment: A review. J Environ Manag, 179, 1-20
  • Reed, B.E., Lin, W., Matsumoto, M.R., Jensen, J.N. (1997). Physicochemical processes. Water Environ Res, 69, 444-462.
  • Reddy, D.H.K., Lee, S.M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci, 201, 68-93.
  • Senberber, F. T., Yildirim, M., Mermer, N. K., and Derun, E. M. (2017). “Adsorption of Cr (III) from aqueous solution using borax sludge,” Acta Chimica Slovenica, 64, (3), 654-660.
  • Serrano, L.Z., Lara, N.O., Vera, R.R., Cholico-González, D. (2021). Removal of Fe(III), Cd(II) and Zn(II) as Hydroxide by Precipitation-Flotation System. Sustainability, 13, 11913.
  • Singh, A.N., Zeng, D.H., Chen, F.S. (2005). Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India. J Environ Sci (China), 17(1), 168-74.
  • Sousa, F.W., Oliveira, A.G., Ribeiro, J.P., Rosa, M.F., Keukeleire, D., Nascimento, R. F. (2010). Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J Environ Manag, 91, 1634-1640.
  • Sočo, E., Kalembkiewicz, J. (2013). Adsorption of nickel (II) and copper (II) ions from aqueous solution by coal fly ash. J Environ Chem Eng, 1, 581-588.
  • Soliman, N. and Moustafa, A. (2020).“Industrial solid waste for heavy metals adsorption features and challenges; a review,” Journal of Materials Research and Technology, 9, (5), 10235-10253.
  • Sosa Lissarrague, M. H., Alshehri, S., Alsalhi, A., Lassalle, V. L., & López Corral, I. (2023). Heavy Metal Removal from Aqueous Effluents by TiO2 and ZnO Nanomaterials. Adsorption Science & Technology, (3), 1-15.
  • Soylu, M. ve Gökkuş, Ö. (2017). Türkiye'deki Doğal Zeolitler ve İyon Değişimi Uygulamaları. Ömer Halis Demir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 11-20.
  • Sharma, M., Singh, J., Hazra, S., and Basu, S. (2019). “Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies”. Microchemical Journal, 145, 105-112.
  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Kim, H.Y., Joshi, M.K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688-105697.
  • Sreedhar, I., Reddy, N.S. (2019). Heavy metal removal from industrial effluent using bio-sorbent blends. SN Appl Sci, 1, 1021.
  • Swelam, A. A., Salem, A. M. A., Ayman, A. A. (2015). Copper (II) removal using three cation exchange Resins: ion exchange equilibrium and kinetics. Middle East J. Appl. Sci, 5, 1017-1027.
  • Tariq, W., Nasir, A., Arslan, C., Rashid, H., Sarmad, M., Gillani, S. H. (2022). Photocatalytic reduction of highly toxic lead and cadmium from aqueous solution. Emerging Techniques for Treatment of Toxic Metals From Wastewater, 399-427.
  • Tayang, A., Songachan, L.S. (2021). Microbial bioremediation of heavy metals. Current Science, 120(6), 1013- 1025.
  • Tunali, S., Çabuk, A., Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J, 115, 203-211.
  • Thangavel, S. Venugopal, G. (2014). Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder Technology, 257, 141-148.
  • Tseng, C.H., Lei, C., Ying-Chu Chen, Y.C. (2018). Evaluating the health costs of oral hexavalent chromium exposure from water pollution: A case study in Taiwan. Journal of Cleaner Production, 172, 819-826.
  • Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462
  • USEPA. (2018). Edition of the Drinking Water Standards and Health Advisories Tables. Office of Water, U.S. Environmental Protection Agency (usepa); Washington, DC, USA: 2018. Epa 822-f-18-001.
  • Wang, L. K., Chen, J. P., Hung, Y.-T. & Shammas, N. K. (2011). Membrane and Desalination Technologies. Membrane and Desalination Technologies, 13, Springer.
  • Wang, X.S., Li, Z.Z., Tao, S.R. (2009). Removal of chromium (VI) from aqueous solution using walnut hull. J Environ Manag, 90, 721-729.
  • Wibowo, Y.G., Safitri, H., Ramadan, B.S. (2022). Adsorption test using ultra-fine materials on heavy metals removal. Bioresour. Technol. Rep, 19, 101149.
  • Wujcik, E.K., Monty, C.N. (2013). Nanotechnology for implantable sensors: Carbon nanotubes and graphene in medicine. WIREs Nanomed. Nanobiotechnol, 5, 233-249.
  • WHO. (2017). Guidelines for Drinking Water Quality. 4th ed. World Health Organization; Geneva, Switzerland.
  • Vidu, R., Matei, E., Predescu, A. M., Alhalaili, B., Pantilimon, C., Tarcea, C., Predescu, C. (2020). Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics, 8(4).
  • Vo, T.S., Hossain, M.M., Jeong, H.M., Kim, K. (2020). Heavy metal removal applications using adsorptive membranes. Nano Convergence, 7, 36-41.
  • Xu, D., Zhou, B., & Yuan, R. (2019). Optimization of coagulationflocculation treatment of wastewater containing Zn (II) and Cr (VI). In IOP Conference Series: Earth and Environmental Science, 227, 5, 052049.
  • Yang, S., Li, L., Pei, Z., Li, C., Lv, J., Xie, J., Wen, B., Zhang, S. (2014). Adsorption kinetics, isotherms and thermodynamics of Cr (III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp, 457, 100-106.
  • Yaqoob, A. A., Parveen T., Umar K., Mohamad Ibrahim M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12, 2-495.
  • Yuca, N. (2010). Karbon nanotüplerin çeşitli yöntemlerle saflaştırılması (Yüksek Lisan Tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No.256495).
  • Zamboulis, D., Peleka, E. N., Lazaridis, N. K., and Matis, K. A. (2011). “Metal ion separation and recovery from environmental sources using various flotation and sorption techniques,” Journal of Chemical Technology & Biotechnology, 86, (3), 335-344.
  • Zouboulis, A.I., Loukidou, M.X., Matis, K.A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem, 39, 909-916.
  • Zhang, Y., Duan, X. (2020). Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology, 81, 1130-1136.
  • Zhai, M., Fu, B.,Zhai, Y., Wang, W., Maroney, A., Keller, A.A., Wang, H., Chovelon, J.-M. (2023). Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. Water Res, 236, 119924.

Heavy Metal Removal from Wastewater

Yıl 2024, , 1684 - 1704, 01.12.2024
https://doi.org/10.21597/jist.1431006

Öz

Heavy metals are well-known environmental pollutants due to their toxicity, long lifetime in the atmosphere, and ability to accumulate in the human body through bioconcentration. Most heavy metals occur naturally, but some are obtained from anthropogenic sources. Heavy metals have large atomic weights and are highly toxic to living organisms. Heavy metal ions are potentially carcinogenic and can bioaccumulate in biological systems. Many heavy metals can cause environmental and air pollution and harm humans. Heavy metals are highly toxic when mixed with various ecological elements such as water, soil and air, and humans and other organisms can be exposed to heavy metals through the food chain. As a result of accumulation, these metals concentrate on living things and can cause diseases such as thyroid, neurological, autism and infertility. Removing heavy metal ions from wastewater is of great importance for a clean environment and human health. Heavy metal pollution in the aquatic environment is increasing due to industrialization, climate change and urbanization. Sources of pollution include mining waste, garbage spills, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock weathering. There are different methods for removing heavy metal ions from various wastewater sources. These methods are adsorption, chemical and electrochemical separation processes, ion exchange, precipitation, nanofiltration, ultrafiltration, reverse osmosis, etc. can be classified as transactions. In general, it seems that most of the studies in recent years have focused on adsorption techniques. Although chemical and membrane methods are practical, large-volume sludge generation and post-treatment requirements are vital issues to be solved for chemical techniques. Future research efforts should be environmentally friendly, focusing on cost-effective and sustainable materials and methods. This review aims to examine how heavy metals are removed from wastewater, about the main technologies and materials used for the removal of heavy metals, taking into account multidisciplinary research on water treatment for the removal of heavy metals

Kaynakça

  • Abdulla, S. Jamil, D. Aziz, K. (2020). IOP Conference Series: Earth and Environmental Science, 612, 012023.
  • Abdelfattah, I., Ismail, A.A.,Al Sayed, F., Almedolab, A., Aboelghait, K. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environ. Nanotechnol. Monit. Manag, 6, 176-183.
  • Acar B. Ç., Acar M. B. (2022). Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
  • Ahmad, A.L., Ooi, B.S. (2010). A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem Eng J, 56:257-263.
  • Al-Asheh, S., Aidan, A. (2021). A Comprehensive Method of Ion Exchange Resins Regeneration and Its Optimization for Water Treatment. IntechOpen. doi: 10.5772/intechopen.93429
  • AL-Othman, Z.A., Ali, R., Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J, 184, 238-247.
  • Ali, A., Sadia, M., Azeem, M., Ahmad, M. Z., Umar, M., Ul Abbas, Z. (2023). Ion Exchange Resins and their Applications in Water Treatment and Pollutants Removal from Environment: A Review : Ion Exchange Resins and their Applications. Futuristic Biotechnology, 3(03), 12-19.
  • Ali, E., Das, R., Maamor, A., Hamid, S.B.A. (2013). Multifunctional Carbon Nanotubes (CNTs): A New Dimension in Environmental Remediation. Adv. Mater. Res, 832, 328-332.
  • Aliplik Akın, B. (2010) Şeker endüstrisi atıksularının kimyasal koagülasyon yöntemiyle arıtılabilirliğinin incelenmesi ve optimum işletim koşullarının belirlenmesi/Investigation of treatment of the sugar industrial wastewaters by chemical coagulation method and determination of optimum operating conditions, Yüksek lisans tezi, Ankara Üniversitesi / Fen Bilimleri Enstitüsü / Kimya Mühendisliği Ana Bilim Dalı.
  • Al-Jobory, A.A.S., Yücel, U.M. (2019). Analysis of some heavy metals accumulation in water, sediment and tissues of different fish species from the razzaza lake, Iraq. Fresenius Environ Bullet, 28(7), 5041-5051
  • Alqadami, A.A., Naushad. M., Abdalla, M.A., Ahamad, T., ALOthman, Z.A., Alshehri, S.M., Ghfar, A.A. (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod, 156, 426-436.
  • Anonim, https://www.mmo.org.tr/sites/default/files/015son.pdf/26.06.2024
  • Anonim, https://www.chemtreat.com/coagulants-flocculants/26.06.2024
  • Anonim, https://www.zema.com.tr/elektro-koagulasyon/26.06.2024
  • Arunlertaree, C., Kaewsomboon, W., Kumsopa, A., Pokethitiyook, P., Panyawathanakit, P. (2007). Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol, 29, 857-868.
  • Atasoy, N., Mercan, U., Alacabey, I., Kul, A.R. (2011). Levels of heavy metals and certain macro elements in potable and tap water at Van City Center. Hacettepe J Biol Chem, 39, 391-96.
  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 12, 643972.
  • Barakat, M.A. (2011). New trends in removing heavy metals from industrial wastewater. Arab J Chem, 4, 361-377.
  • Barick, A., Tripathy, D.K. (2011). Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater. Sci. Eng. B, 176, 1435-1447.
  • Baysal, A., Ozbek, N., Akman, S. (2013). Determination of trace metals in waste water and their removal processes. Waste Water-Treatment Technologies and Recent Analytical Developments, 1, 145-171.
  • Beauvais, R.A., Alexandratos, S. D. (1998). Polymer-supported reagents for the selective complexation of metal ions: An overview. React Funct Polym, 36, 113-123.
  • Belkacem, M., Khodir, M., Abdelkrim, S. (2008). Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalinatio, 228, 245-254.
  • Berradi, M., Chabab, Z., Arroub, H., Nounah, H., Harfi, A.E. (2014). Optimization of the coagulation/flocculation process for the treatment of industrial wastewater from the hot dip galvanizing of steel. J. Mater. Environ. Sci., 5 (2), 360-365.
  • Bratjer, K.., Dabek-Zlotorzynska, E. (1990). Separation of Metal Ions on a Modified Aluminum Oxide. Talanta, 37-613.
  • BrbootI, M.M., Abid, B.A., Al-ShuwaikI, N. M. (2011). Removal of heavy metals using chemicals precipitation. Eng Technol J, 29, 595-612.
  • Chen, L., Li, Z., Li, W., Chen, Z., Chen, G., Yang, W., Zhang, X., Liu, X. (2021). Investigation of adsorption kinetics and the isotherm mechanism of manganese by modified Diatomite. ACS Omega, 6, 16402-16409
  • Choumane, R., & Peulon, S. (2022). Innovative electrochemical process for a total removal and/or separation of soluble heavy metals. Journal of Environmental Chemical Engineering, 10(6), 108607
  • Chojnacka, K., Chojnacki, A., Górecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, 147-153.
  • Cséfalvay E, Pauer V, Mizsey P (2009) Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination, 240:132-142.
  • Çınar Acar, B., & Acar, M. B. (2022). Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
  • Das, R., Ali, E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97-109.
  • Demir, E., Yalçın, H. (2014). Adsorbentler: Sınıflandırma, Özellikler, Kullanım ve Öngörüler. Türk Bilimsel Derlemeler Dergisi, 7(2), 70-79.
  • Escudero, L.B., Quintas, P.Y., Wuilloud, R.G., Dotto, G.L. (2018). Green Adsorbents for Pollutant Removal. Springer; Cham, Switzerland. Biosorption of metals and metalloids, 35-86.
  • Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res, 44:97-104.
  • Filibeli, A. ve Büyükkamacı, M.. (2002), Karasuyun Anaeobik Yöntemlerle Arıtılabilirliğinin Değerlendirilmesi, I. Zeytinyağı Üretiminde Çevre Sorunları ve Çözümleri Uluslararası Çalıştayı Bildiriler Kitabı, 67-77, Balıkesir.
  • Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418.
  • Goel, N., Sharma, V. (2012). Carbon Nanotubes: A New Era in Mechanical Engineering–A Review. Int. J. Appl. Eng. Res, 7, 1623-1626.
  • Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics, Journal of Industrial and Engineering Chemistry, 30, 14-19.
  • Gupta, V.K., Ali, I., Saleh, T.A., Nayaka, A., Agarwal, S. (2012). Chemical treatment technologies for wastewater recycling-an overview. The Royal Society of Chemistry, 2, 6380-6388.
  • Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski, A., & Mishra, P. K. (2021). A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials, 14(16).
  • Ghorai, S., Sarkar, A.K., Pal, S. (2014). Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresour Technol, 170, 578-582.
  • Han, W., Fu F., Cheng Z., Tang B., Wu S. (2016). Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J Hazard Mater, 302, 437-446.
  • Horsfall, M., Abia, A.A., Spiff, AI. (2006). Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol, 97, 283-291.
  • Howe, K.J., Hand, D.W., Crittenden, J.C, Trussell, R.R. (2012). Water purification principles. Hoboken, New Jersey: John Wiley & Sons Inc.
  • Huang, J., Qi, F., Zeng, G., Shi, L., Li, X., Gu, Y., & Shi, Y. (2017). Repeating recovery and reuse of SDS micelles from MEUF retentate containing Cd2+ by acidification UF. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 361-368.
  • Hughes, M.F. (2006). Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect, 114, 1790-1796.
  • İnce, M., Kaplan-İnce, O. (2019). Heavy Metal Removal Techniques Using Response Surface Methodology: Water/Wastewater Treatment. Toxicity of Nanomaterials, 1, 1-15
  • Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q. (2015). Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci, 16, 29592-29630.
  • Jaishankar, M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol, 7,60.
  • Jagwani, M., Dohare, E.D. (2018). Electro Coagulation Applications in Water and Wastewater Treatment: A Review. International Journal of Scientific & Engineering Research, 9, 1430-1436.
  • Jaya Rajan, M., Indira Anish, C. (2024). Role of Activated Carbon in Water Treatment. IntechOpen. doi: 10.5772/intechopen.108349
  • Jianlong, W. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem, 37, 847-850.
  • Jiao GJ, Ma J, Li Y, Jin D, Zhou J, Sun R. (2022). Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. J Hazard Mater. 5,421-126722.
  • Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z., Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, J. Environ. Sci., 21, 539-544.
  • Kantipuly, C., Katragadda S., Chow A., Gesser H.D. (1990). Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta, 37, 491-517.
  • Kandah, M.I., Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater, 146, 283-288.
  • Karnitz, O., Jr., Gurgel, L.V.A., De Melo, J.C.P., Botaro, V.R., Melo, T.M.S., de Freitas Gil, R.P., Gil, L.F. (2007). Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol, 98, 1291-1297.
  • Koedrith, P., Kim, H., Weon, J.-I., Seo, Y.R. (2013). Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health, 216, 587-598.
  • Koyuncu, T., Kural, E. ve Topacık D., 2001, Pilot scale nanofiltration membrane seperation for waste management in textile indstry, Water Science and Tecnology, 43 (10), 223-240 p.
  • Kuo, C.Y., Lin, H.Y. (2009). Adsorption of aqueous cadmium (II) onto modified multiwalled carbon nanotubes following microwave/chemical treatment, Desalination, 249, 792-796.
  • Kumar, B., Smita, K., Sánchez, E., Stael, C., Cumbal, L. (2016). Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecol Eng, 93, 152-158.
  • Küçükçongar, S., Sevimli, M.F. (2013). Natural Organic Matter (NOM) Removal by Coagulation and Adsorption. Journal of Selcuk University Natural and Applied Science, 2, 268-277.
  • Khan, A.A., Naqvi, S.R., Ali, I., Arshad, M., AlMohamadi, H., Sikandar, U. (2023). Algal-derived biochar as an efficient adsorbent for removal of Cr (VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. Chemosphere, 316, 137826.
  • Li, Y.H., Liu, F.Q., Xia, B., Du, Q.J., Zhang, P., Wang, D.C., Wang, Z.H., Xia, Y.Z. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites, J. Hazard. Mater, 177, 876-880.
  • Lim, J.T., Tan, Y.Q., Valeri, L., Lee, J., Geok, P.P., Chia S.E., Ong, C.N., Seow, W.J. (2019). Association between serum heavy metals and prostate cancer risk – A multiple metal analysis. Environment International, 132, 105-109.
  • Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G., Li, X. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater, 186, 481-490.
  • Mao, M., Yan, T., Shen, J., Zhang, J., Zhang, D. (2021). Capacitive Removal of Heavy Metal Ions from Wastewater via an Electro-Adsorption and Electro-Reaction Coupling Process. Environmental Science & Technology, 55, 3333-3334.
  • Maity, S., Patil, P.B., SenSharma, S.,Sarkar, A. (2022). Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. Chemosphere, 307, 136115.
  • Mishra, J., Saini, R., Singh, D. (2021). Review paper on removal of heavy metal ions from industrial wastewater effluents, IOP Conf. Sherry. Material science and engineering, 1168, 012027.
  • Meunier, N., Drogui, P., Montan´e, C., Hausler, R., Blais, J.F., Mercier, G. (2006). Heavy metals removal from acidic and saline soil leachate using either electrochemical coagulation or chemical precipitation, J Environ Eng, 132, 545-554.
  • Mercan Yücel, U. (2022). Determination of Aflatoxin and Heavy Metal Levels in Some Spices Sold as Unpackaged in Van Province and Health Risks Assessment of Heavy Metals. Balıkesir Sağlık Bilimleri Dergisi, 11(Supplement 1), 7-14.
  • Mercan U. Yücel, Atasoy N. (2019). Comparision of sample preparation methods for determination of heavy metals in cattle hair by ICP-OES. Fresenius Environ Bull, 28, 9620-9626.
  • Mezine, Z., Kadri, A., Hamadou, L., Benbrahim, N., & Chaouchi, A. (2018). Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 817, 36-47.
  • Morais, S., Costa, F.G., Pereira, M.D.L. (2012). Heavy metals and human health. Environ Health Emerg Issues Pract,10, 227-245.
  • Mohammed A. A., Mahmood, H. S. (2013). Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin ” Journal of Engineering, 19(10), 1327-1340.
  • Mustapha, S., Shuaib, D., Ndamitso, M., Etsuyankpa, M., Sumaila, A., Mohammed, U., Nasirudeen, M. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci, 9, 142.
  • Naushad, M., Vasudevan, S., Sharma, G., Kumar, A., Alothman, Z.A. (2016). Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat, 57, 18551-18559.
  • Naushad, M., Ahamad, T., Al-Maswari, .BM., Alqadami, A.A., Alshehri, S.M. (2017). Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J, 330, 1351-1360.
  • Nguyen, C.M., Bang, S., Cho, J., Kim, K.W. (2009). Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination, 245:82-94.
  • Özbolat, G., Tuli, A. (2016). Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi, 25(4), 502-521.
  • Özyonar, F., Karagözoğlu,B. (2012). “Elektrokoagülasyon prosesi ile tekstil sanayi atıksuyunun arıtımı,” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 29-37.
  • Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, (4), 36-41.
  • Pang, F.M., Kumar, P., Teng, T.T., Omar A.K.M., Wasewar, K.L. (2011). Removal of lead, zinc and iron by coagulation–flocculation. Journal of the Taiwan Institute of Chemical Engineers, 42, 809-815.
  • Pillay, K., Cukrowska, E.M., Coville, N.J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater, 166, 1067-1075.
  • Rao, G.P., Lu, C., Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol, 58, 224-231.
  • Rahmati, N. O., Pourafshari Chenar, M. Azizi Namaghi, H. (2017). Removal of free active chlorine from synthetic wastewater by MEUF process using polyethersulfone/titania nanocomposite membrane. Sep Purif Technol, 181, 213-222.
  • Raj, A., Yadav, A., Rawat, A.P., Singh, A.K., Kumar, S., Pandey, A.K., Sirohi, R., Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology&Innovation, 23, 101556.
  • Ravelli, D., Merli, D., Quartarone, E., Profumo, A., Mustarelli, P., Fagnoni, M. (2013). PEGylated carbon nanotubes: Preparation, properties and applications. RSC Adv, 3, 13569-13582.
  • Raval, N.P., Shah, P.U., Shah, N.K. (2016). Adsorptive removal of nickel (II) ions from aqueous environment: A review. J Environ Manag, 179, 1-20
  • Reed, B.E., Lin, W., Matsumoto, M.R., Jensen, J.N. (1997). Physicochemical processes. Water Environ Res, 69, 444-462.
  • Reddy, D.H.K., Lee, S.M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci, 201, 68-93.
  • Senberber, F. T., Yildirim, M., Mermer, N. K., and Derun, E. M. (2017). “Adsorption of Cr (III) from aqueous solution using borax sludge,” Acta Chimica Slovenica, 64, (3), 654-660.
  • Serrano, L.Z., Lara, N.O., Vera, R.R., Cholico-González, D. (2021). Removal of Fe(III), Cd(II) and Zn(II) as Hydroxide by Precipitation-Flotation System. Sustainability, 13, 11913.
  • Singh, A.N., Zeng, D.H., Chen, F.S. (2005). Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India. J Environ Sci (China), 17(1), 168-74.
  • Sousa, F.W., Oliveira, A.G., Ribeiro, J.P., Rosa, M.F., Keukeleire, D., Nascimento, R. F. (2010). Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J Environ Manag, 91, 1634-1640.
  • Sočo, E., Kalembkiewicz, J. (2013). Adsorption of nickel (II) and copper (II) ions from aqueous solution by coal fly ash. J Environ Chem Eng, 1, 581-588.
  • Soliman, N. and Moustafa, A. (2020).“Industrial solid waste for heavy metals adsorption features and challenges; a review,” Journal of Materials Research and Technology, 9, (5), 10235-10253.
  • Sosa Lissarrague, M. H., Alshehri, S., Alsalhi, A., Lassalle, V. L., & López Corral, I. (2023). Heavy Metal Removal from Aqueous Effluents by TiO2 and ZnO Nanomaterials. Adsorption Science & Technology, (3), 1-15.
  • Soylu, M. ve Gökkuş, Ö. (2017). Türkiye'deki Doğal Zeolitler ve İyon Değişimi Uygulamaları. Ömer Halis Demir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 11-20.
  • Sharma, M., Singh, J., Hazra, S., and Basu, S. (2019). “Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies”. Microchemical Journal, 145, 105-112.
  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Kim, H.Y., Joshi, M.K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688-105697.
  • Sreedhar, I., Reddy, N.S. (2019). Heavy metal removal from industrial effluent using bio-sorbent blends. SN Appl Sci, 1, 1021.
  • Swelam, A. A., Salem, A. M. A., Ayman, A. A. (2015). Copper (II) removal using three cation exchange Resins: ion exchange equilibrium and kinetics. Middle East J. Appl. Sci, 5, 1017-1027.
  • Tariq, W., Nasir, A., Arslan, C., Rashid, H., Sarmad, M., Gillani, S. H. (2022). Photocatalytic reduction of highly toxic lead and cadmium from aqueous solution. Emerging Techniques for Treatment of Toxic Metals From Wastewater, 399-427.
  • Tayang, A., Songachan, L.S. (2021). Microbial bioremediation of heavy metals. Current Science, 120(6), 1013- 1025.
  • Tunali, S., Çabuk, A., Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J, 115, 203-211.
  • Thangavel, S. Venugopal, G. (2014). Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder Technology, 257, 141-148.
  • Tseng, C.H., Lei, C., Ying-Chu Chen, Y.C. (2018). Evaluating the health costs of oral hexavalent chromium exposure from water pollution: A case study in Taiwan. Journal of Cleaner Production, 172, 819-826.
  • Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462
  • USEPA. (2018). Edition of the Drinking Water Standards and Health Advisories Tables. Office of Water, U.S. Environmental Protection Agency (usepa); Washington, DC, USA: 2018. Epa 822-f-18-001.
  • Wang, L. K., Chen, J. P., Hung, Y.-T. & Shammas, N. K. (2011). Membrane and Desalination Technologies. Membrane and Desalination Technologies, 13, Springer.
  • Wang, X.S., Li, Z.Z., Tao, S.R. (2009). Removal of chromium (VI) from aqueous solution using walnut hull. J Environ Manag, 90, 721-729.
  • Wibowo, Y.G., Safitri, H., Ramadan, B.S. (2022). Adsorption test using ultra-fine materials on heavy metals removal. Bioresour. Technol. Rep, 19, 101149.
  • Wujcik, E.K., Monty, C.N. (2013). Nanotechnology for implantable sensors: Carbon nanotubes and graphene in medicine. WIREs Nanomed. Nanobiotechnol, 5, 233-249.
  • WHO. (2017). Guidelines for Drinking Water Quality. 4th ed. World Health Organization; Geneva, Switzerland.
  • Vidu, R., Matei, E., Predescu, A. M., Alhalaili, B., Pantilimon, C., Tarcea, C., Predescu, C. (2020). Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics, 8(4).
  • Vo, T.S., Hossain, M.M., Jeong, H.M., Kim, K. (2020). Heavy metal removal applications using adsorptive membranes. Nano Convergence, 7, 36-41.
  • Xu, D., Zhou, B., & Yuan, R. (2019). Optimization of coagulationflocculation treatment of wastewater containing Zn (II) and Cr (VI). In IOP Conference Series: Earth and Environmental Science, 227, 5, 052049.
  • Yang, S., Li, L., Pei, Z., Li, C., Lv, J., Xie, J., Wen, B., Zhang, S. (2014). Adsorption kinetics, isotherms and thermodynamics of Cr (III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp, 457, 100-106.
  • Yaqoob, A. A., Parveen T., Umar K., Mohamad Ibrahim M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12, 2-495.
  • Yuca, N. (2010). Karbon nanotüplerin çeşitli yöntemlerle saflaştırılması (Yüksek Lisan Tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No.256495).
  • Zamboulis, D., Peleka, E. N., Lazaridis, N. K., and Matis, K. A. (2011). “Metal ion separation and recovery from environmental sources using various flotation and sorption techniques,” Journal of Chemical Technology & Biotechnology, 86, (3), 335-344.
  • Zouboulis, A.I., Loukidou, M.X., Matis, K.A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem, 39, 909-916.
  • Zhang, Y., Duan, X. (2020). Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology, 81, 1130-1136.
  • Zhai, M., Fu, B.,Zhai, Y., Wang, W., Maroney, A., Keller, A.A., Wang, H., Chovelon, J.-M. (2023). Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. Water Res, 236, 119924.
Toplam 125 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enstrümantal Yöntemler
Bölüm Kimya / Chemistry
Yazarlar

Nurhayat Atasoy 0000-0002-2171-3996

Yayımlanma Tarihi 1 Aralık 2024
Gönderilme Tarihi 3 Şubat 2024
Kabul Tarihi 19 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Atasoy, N. (2024). Atık Sulardan Ağır Metal Giderimi. Journal of the Institute of Science and Technology, 14(4), 1684-1704. https://doi.org/10.21597/jist.1431006
AMA Atasoy N. Atık Sulardan Ağır Metal Giderimi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2024;14(4):1684-1704. doi:10.21597/jist.1431006
Chicago Atasoy, Nurhayat. “Atık Sulardan Ağır Metal Giderimi”. Journal of the Institute of Science and Technology 14, sy. 4 (Aralık 2024): 1684-1704. https://doi.org/10.21597/jist.1431006.
EndNote Atasoy N (01 Aralık 2024) Atık Sulardan Ağır Metal Giderimi. Journal of the Institute of Science and Technology 14 4 1684–1704.
IEEE N. Atasoy, “Atık Sulardan Ağır Metal Giderimi”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 4, ss. 1684–1704, 2024, doi: 10.21597/jist.1431006.
ISNAD Atasoy, Nurhayat. “Atık Sulardan Ağır Metal Giderimi”. Journal of the Institute of Science and Technology 14/4 (Aralık 2024), 1684-1704. https://doi.org/10.21597/jist.1431006.
JAMA Atasoy N. Atık Sulardan Ağır Metal Giderimi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1684–1704.
MLA Atasoy, Nurhayat. “Atık Sulardan Ağır Metal Giderimi”. Journal of the Institute of Science and Technology, c. 14, sy. 4, 2024, ss. 1684-0, doi:10.21597/jist.1431006.
Vancouver Atasoy N. Atık Sulardan Ağır Metal Giderimi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(4):1684-70.