Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions

Yıl 2024, , 1228 - 1239, 01.09.2024
https://doi.org/10.21597/jist.1481108

Öz

Sustainable machining is an approach that aims to minimize environmental impacts and optimize resource use in industrial production processes. The basis of this approach lies in reducing the environmental and economic impacts associated with the use of machining methods. Machining is a widely used method for shaping metal parts, and this process is often energy-intensive and wasteful. Sustainable machining involves various strategies. These include methods such as the use of renewable energy resources, increasing energy and material efficiency, improving recycling and waste management, and selecting materials to reduce cutting fluids and environmental impacts in production processes. In this study, the machinability properties of Nimonic-60 superalloy, which is an important material in the field of industry, were examined. In order to conduct machinability trials, three different cutting speeds (Vc, 40-50-60 m/min), three different feed rates per tooth (fn, 0.050-0.075-0.100 mm/rev), and three different cooling/lubrication conditions (dry-air-MQL) were used. The trials were conducted using a computer-controlled three-axis milling machine. Additionally, Taguchi analysis was performed to reduce the number of experiments and costs. Consequently, it was concluded that the most optimal choice for surface roughness, flank wear, and cutting temperature was the Minimum Quantity Lubrication (MQL) environment. Minimum surface roughness, tool wear and cutting temperature in the MQL environment were measured as 0.499µm, 0.201mm and 66.4 C˚ respectively. The Taguchi study findings revealed that cooling/lubrication had the most impact on surface roughness (56.66%), flank wear (87.96%), and cutting temperature (78.68%).

Etik Beyan

There is no need to obtain ethics committee permission for the article prepared.

Kaynakça

  • Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel. Journal of Materials Engineering and Performance, 32(3), 1390-1401. https://doi.org/10.1007/s11665-022-07190-9
  • Bagci, M. (2016). Determination of solid particle erosion with Taguchi optimization approach of hybrid composite systems. Tribology International, 94, 336-345. https://doi.org/10.1016/j.triboint.2015.09.032
  • Bilga, P. S., Singh, S., & Kumar, R. (2016). Optimization of energy consumption response parameters for turning operation using Taguchi method. Journal of Cleaner Production, 137, 1406-1417. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.07.220
  • Cantero, J. L., Díaz-Álvarez, J., Infante-García, D., Rodríguez, M., & Criado, V. (2018). High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions. Metals, 8(3), 192. https://www.mdpi.com/2075-4701/8/3/192
  • Canyılmaz, E., & Kutay, F. (2003). Taguchi Metodunda Varyans Analizine Alternatif Bir Yaklaşim. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18(3).
  • Cetin, M. H., Ozcelik, B., Kuram, E., & Demirbas, E. (2011). Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. Journal of Cleaner Production, 19(17), 2049-2056. https://doi.org/https://doi.org/10.1016/j.jclepro.2011.07.013
  • Değirmenci, Ü., Usca, Ü. A., & Şap, S. (2023). Machining characterization and optimization under different cooling/lubrication conditions of Al-4Gr hybrid composites fabricated by vacuum sintering. Vacuum, 208, 111741. https://doi.org/https://doi.org/10.1016/j.vacuum.2022.111741
  • Elbah, M., Yallese, M. A., Aouici, H., Mabrouki, T., & Rigal, J.-F. (2013). Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement, 46(9), 3041-3056. https://doi.org/https://doi.org/10.1016/j.measurement.2013.06.018
  • Gupta, K., & Laubscher, R. F. (2016). Sustainable machining of titanium alloys: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(14), 2543-2560. https://doi.org/10.1177/0954405416634278
  • Gupta, M. K., Sood, P. K., Singh, G., & Sharma, V. S. (2017). Sustainable machining of aerospace material – Ti (grade-2) alloy: Modeling and optimization. Journal of Cleaner Production, 147, 614-627. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.133
  • Hsiao, T.-C., Vu, N.-C., Tsai, M.-C., Dang, X.-P., & Huang, S.-C. (2020). Modeling and optimization of machining parameters in milling of INCONEL-800 super alloy considering energy, productivity, and quality using nanoparticle suspended lubrication. Measurement and Control, 54(5-6), 880-894. https://doi.org/10.1177/0020294020925842
  • Hussain, S. A. I., Sen, B., Das Gupta, A., & Mandal, U. K. (2020). Novel Multi-objective Decision-Making and Trade-Off Approach for Selecting Optimal Machining Parameters of Inconel-800 Superalloy. Arabian Journal for Science and Engineering, 45(7), 5833-5847. https://doi.org/10.1007/s13369-020-04583-7
  • Islam, A. K. M. K., Mia, M., & Dhar, N. R. (2017). Effects of internal cooling by cryogenic on the machinability of hardened steel. The International Journal of Advanced Manufacturing Technology, 90(1), 11-20. https://doi.org/10.1007/s00170-016-9373-y
  • Kulkarni, H., & Dabhade, V. V. (2019). Green machining of powder-metallurgy-steels (PMS): an overview. Journal of Manufacturing Processes, 44, 1-18.
  • Makhesana, M. A., Patel, K. M., & Khanna, N. (2022). Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690. Journal of Manufacturing Processes, 77, 708-721. https://doi.org/https://doi.org/10.1016/j.jmapro.2022.03.060
  • Marques, A., Narala, S. K. R., Machado, A. R., Gunda, R. K., Josyula, S. K., Da Silva, R. B., & Da Silva, M. B. (2015). Performance assessment of MQSL: Minimum quantity solid lubricant during turning of Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(7), 1144-1159. https://doi.org/10.1177/0954405415592128
  • Mia, M., Dey, P. R., Hossain, M. S., Arafat, M. T., Asaduzzaman, M., Shoriat Ullah, M., & Tareq Zobaer, S. M. (2018). Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement, 122, 380-391. https://doi.org/https://doi.org/10.1016/j.measurement.2018.02.016
  • Musfirah, A. H., Ghani, J. A., & Haron, C. H. C. (2017). Tool wear and surface integrity of inconel 718 in dry and cryogenic coolant at high cutting speed. Wear, 376-377, 125-133. https://doi.org/https://doi.org/10.1016/j.wear.2017.01.031
  • Nimel Sworna Ross, K., & Manimaran, G. (2019). Effect of cryogenic coolant on machinability of difficult-to-machine Ni–Cr alloy using PVD-TiAlN coated WC tool. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 44. https://doi.org/10.1007/s40430-018-1552-3
  • Öndin, O., Kıvak, T., Sarıkaya, M., & Yıldırım, Ç. V. (2020). Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel. Tribology International, 148, 106323. https://doi.org/https://doi.org/10.1016/j.triboint.2020.106323
  • Özlü, B. (2021). Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1241-1251.
  • Özlü, B. (2022). Evaluation Of Energy Consumption, Cutting Force, Surface Roughness And Vibration In Machining Toolox 44 Steel Using Taguchi-Based Gray Relational Analysis. Surface Review and Letters, 29(08), 2250103. https://doi.org/10.1142/S0218625X22501037
  • Özlü, B., & Akgün, M. (2024). Evaluation of the machinability performance of PH 13-8 Mo maraging steel used in the aerospace industry. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(2), 687-699. https://doi.org/10.1177/09544089231216035
  • Özlü, B., Akgün, M., & Demir, H. (2023). Evaluation of the effect of hot forging and cooling conditions on the microstructure, hardness and machinability of medium carbon DIN 41Cr4 steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 231-243.
  • Özlü, B., Demir, H., Türkmen, M., & Gündüz, S. (2021). Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(22), 6228-6239. https://doi.org/10.1177/0954406220984498
  • Patel, T., Khanna, N., Yadav, S., Shah, P., Sarikaya, M., Singh, D., Gupta, M. K., & Kotkunde, N. (2021). Machinability analysis of nickel-based superalloy Nimonic 90: a comparison between wet and LCO2 as a cryogenic coolant. The International Journal of Advanced Manufacturing Technology, 113(11), 3613-3628. https://doi.org/10.1007/s00170-021-06793-1
  • Pusavec, F., Deshpande, A., Yang, S., M'Saoubi, R., Kopac, J., Dillon, O. W., & Jawahir, I. S. (2014). Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models. Journal of Cleaner Production, 81, 255-269. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.06.040
  • Salur, E. (2022). Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International, 174, 107677. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107677
  • Sarıkaya, M., & Güllü, A. (2015). Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. Journal of Cleaner Production, 91, 347-357. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.12.020
  • Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2015). Improved Machining Performance with Nanoparticle Enriched Cutting Fluids under Minimum Quantity Lubrication (MQL) Technique: A Review. Materials Today: Proceedings, 2(4), 3545-3551. https://doi.org/https://doi.org/10.1016/j.matpr.2015.07.066
  • Singh, G., Gupta, M. K., Mia, M., & Sharma, V. S. (2018). Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 97(1), 481-494. https://doi.org/10.1007/s00170-018-1911-3
  • Şap, E., Usca, Ü. A., & Uzun, M. (2022). Machining and optimization of reinforced copper composites using different cooling-lubrication conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(9), 399. https://doi.org/10.1007/s40430-022-03678-6
  • Şap, S. (2023a). Machining and Energy Aspect Assessment with Sustainable Cutting Fluid Strategies of Al–12Si Based Hybrid Composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 11, 33-53. https://doi.org/10.1007/s40684-023-00544-1
  • Şap, S. (2023b). Understanding the Machinability and Energy Consumption of Al-Based Hybrid Composites under Sustainable Conditions. Lubricants, 11(3), 111. https://doi.org/https://doi.org/10.3390/lubricants11030111
  • Şap, S., Uzun, M., Usca, Ü. A., Pimenov, D. Y., Giasin, K., & Wojciechowski, S. (2022). Investigation of machinability of Ti–B-SiCp reinforced Cu hybrid composites in dry turning. Journal of Materials Research and Technology, 18, 1474-1487. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.03.049
  • Thakur, A., Gangopadhyay, S., & Mohanty, A. (2015). Investigation on Some Machinability Aspects of Inconel 825 During Dry Turning. Materials and Manufacturing Processes, 30(8), 1026-1034. https://doi.org/10.1080/10426914.2014.984216
  • Tu, L., Lin, L., Liu, C., Zheng, T., Deng, Y., Han, L., An, Q., Ming, W., & Chen, M. (2023). Tool wear characteristics analysis of cBN cutting tools in high-speed turning of Inconel 718. Ceramics International, 49(1), 635-658. https://doi.org/https://doi.org/10.1016/j.ceramint.2022.09.034
  • Usca, Ü. A. (2023). The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T. Polymers, 15(23), 4521. https://www.mdpi.com/2073-4360/15/23/4521
  • Usca, Ü. A., Şap, S., & Uzun, M. (2023). Evaluation of Machinability of Cu Matrix Composite Materials by Computer Numerical Control Milling under Cryogenic LN2 and Minimum Quantity Lubrication. Journal of Materials Engineering and Performance, 32(5), 2417-2431. https://doi.org/10.1007/s11665-022-07262-w
  • Usca, Ü. A., Şap, S., Uzun, M., & Değirmenci, Ü. (2024). Assessment of the machinability and energy consumption characteristics of Cu–6Gr hybrid composites under sustainable operating. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(4), 221. https://doi.org/10.1007/s40430-024-04815-z
  • Usca, Ü. A., Uzun, M., Şap, S., Giasin, K., Pimenov, D. Y., & Prakash, C. (2022). Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions. Journal of Materials Research and Technology, 21, 893-904. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.09.067
  • Wang, C., Li, K., Chen, M., & Liu, Z. (2015). Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays. Journal of Cleaner Production, 108, 145-157. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.06.095

Nimonic-60 Süper Alaşımının Sürdürülebilir Koşullar Altında İşlenebilirlik Özelliklerinin Belirlenmesi

Yıl 2024, , 1228 - 1239, 01.09.2024
https://doi.org/10.21597/jist.1481108

Öz

Sürdürülebilir işleme, endüstriyel üretim süreçlerinde çevresel etkileri en aza indirmeyi ve kaynak kullanımını optimize etmeyi amaçlayan bir yaklaşımdır. Bu yaklaşımın temeli, işleme yöntemlerinin kullanımıyla ilişkili çevresel ve ekonomik etkilerin azaltılmasında yatmaktadır. İşleme, metal parçaları şekillendirmek için yaygın olarak kullanılan bir yöntemdir ve bu işlem genellikle enerji yoğun ve israfa neden olur. Sürdürülebilir işleme çeşitli stratejiler içerir. Bunlar arasında yenilenebilir enerji kaynaklarının kullanılması, enerji ve malzeme verimliliğinin arttırılması, geri dönüşüm ve atık yönetiminin iyileştirilmesi, üretim süreçlerinde kesme sıvılarının ve çevresel etkilerin azaltılmasına yönelik malzeme seçimi gibi yöntemler yer almaktadır. Bu çalışmada sanayi alanında önemli bir malzeme olan Nimonic-60 süper alaşımının işlenebilirlik özellikleri incelenmiştir. İşlenebilirlik denemelerinin yapılabilmesi için üç farklı kesme hızı (Vc, 40-50-60 m/dak), diş başına üç farklı ilerleme (fn, 0.050-0.075-0.100 mm/dev) ve üç farklı soğutma/yağlama koşulu (kuru, hava, MQL) kullanıldı. Deneyler bilgisayar kontrollü üç eksenli bir freze makinesi kullanılarak gerçekleştirildi. Ayrıca deney sayısını ve maliyetleri azaltmak amacıyla Taguchi analizi yapılmıştır. Sonuç olarak yüzey pürüzlülüğü, yan aşınma ve kesme sıcaklığı açısından en uygun seçimin Minimum Miktarda Yağlama (MQL) ortamı olduğu sonucuna varılmıştır. Minimum Miktar Yağlama ortamında en düşük yüzey pürüzlülüğü, takım aşınması ve kesme sıcaklığı sırasıyla 0.499μm, 0.201mm ve 66.4 C˚ olarak ölçülmüştür. Taguchi çalışmasının bulguları, soğutma/yağlamanın yüzey pürüzlülüğü (%56.66), yan aşınma (%87.96) ve kesme sıcaklığı (%78.68) üzerinde en fazla etkiye sahip olduğunu ortaya çıkardı.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur.

Kaynakça

  • Surface Roughness, Cutting Power, and Temperature in Hard Turning of AISI H13 Steel. Journal of Materials Engineering and Performance, 32(3), 1390-1401. https://doi.org/10.1007/s11665-022-07190-9
  • Bagci, M. (2016). Determination of solid particle erosion with Taguchi optimization approach of hybrid composite systems. Tribology International, 94, 336-345. https://doi.org/10.1016/j.triboint.2015.09.032
  • Bilga, P. S., Singh, S., & Kumar, R. (2016). Optimization of energy consumption response parameters for turning operation using Taguchi method. Journal of Cleaner Production, 137, 1406-1417. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.07.220
  • Cantero, J. L., Díaz-Álvarez, J., Infante-García, D., Rodríguez, M., & Criado, V. (2018). High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions. Metals, 8(3), 192. https://www.mdpi.com/2075-4701/8/3/192
  • Canyılmaz, E., & Kutay, F. (2003). Taguchi Metodunda Varyans Analizine Alternatif Bir Yaklaşim. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18(3).
  • Cetin, M. H., Ozcelik, B., Kuram, E., & Demirbas, E. (2011). Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. Journal of Cleaner Production, 19(17), 2049-2056. https://doi.org/https://doi.org/10.1016/j.jclepro.2011.07.013
  • Değirmenci, Ü., Usca, Ü. A., & Şap, S. (2023). Machining characterization and optimization under different cooling/lubrication conditions of Al-4Gr hybrid composites fabricated by vacuum sintering. Vacuum, 208, 111741. https://doi.org/https://doi.org/10.1016/j.vacuum.2022.111741
  • Elbah, M., Yallese, M. A., Aouici, H., Mabrouki, T., & Rigal, J.-F. (2013). Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement, 46(9), 3041-3056. https://doi.org/https://doi.org/10.1016/j.measurement.2013.06.018
  • Gupta, K., & Laubscher, R. F. (2016). Sustainable machining of titanium alloys: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(14), 2543-2560. https://doi.org/10.1177/0954405416634278
  • Gupta, M. K., Sood, P. K., Singh, G., & Sharma, V. S. (2017). Sustainable machining of aerospace material – Ti (grade-2) alloy: Modeling and optimization. Journal of Cleaner Production, 147, 614-627. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.133
  • Hsiao, T.-C., Vu, N.-C., Tsai, M.-C., Dang, X.-P., & Huang, S.-C. (2020). Modeling and optimization of machining parameters in milling of INCONEL-800 super alloy considering energy, productivity, and quality using nanoparticle suspended lubrication. Measurement and Control, 54(5-6), 880-894. https://doi.org/10.1177/0020294020925842
  • Hussain, S. A. I., Sen, B., Das Gupta, A., & Mandal, U. K. (2020). Novel Multi-objective Decision-Making and Trade-Off Approach for Selecting Optimal Machining Parameters of Inconel-800 Superalloy. Arabian Journal for Science and Engineering, 45(7), 5833-5847. https://doi.org/10.1007/s13369-020-04583-7
  • Islam, A. K. M. K., Mia, M., & Dhar, N. R. (2017). Effects of internal cooling by cryogenic on the machinability of hardened steel. The International Journal of Advanced Manufacturing Technology, 90(1), 11-20. https://doi.org/10.1007/s00170-016-9373-y
  • Kulkarni, H., & Dabhade, V. V. (2019). Green machining of powder-metallurgy-steels (PMS): an overview. Journal of Manufacturing Processes, 44, 1-18.
  • Makhesana, M. A., Patel, K. M., & Khanna, N. (2022). Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690. Journal of Manufacturing Processes, 77, 708-721. https://doi.org/https://doi.org/10.1016/j.jmapro.2022.03.060
  • Marques, A., Narala, S. K. R., Machado, A. R., Gunda, R. K., Josyula, S. K., Da Silva, R. B., & Da Silva, M. B. (2015). Performance assessment of MQSL: Minimum quantity solid lubricant during turning of Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(7), 1144-1159. https://doi.org/10.1177/0954405415592128
  • Mia, M., Dey, P. R., Hossain, M. S., Arafat, M. T., Asaduzzaman, M., Shoriat Ullah, M., & Tareq Zobaer, S. M. (2018). Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement, 122, 380-391. https://doi.org/https://doi.org/10.1016/j.measurement.2018.02.016
  • Musfirah, A. H., Ghani, J. A., & Haron, C. H. C. (2017). Tool wear and surface integrity of inconel 718 in dry and cryogenic coolant at high cutting speed. Wear, 376-377, 125-133. https://doi.org/https://doi.org/10.1016/j.wear.2017.01.031
  • Nimel Sworna Ross, K., & Manimaran, G. (2019). Effect of cryogenic coolant on machinability of difficult-to-machine Ni–Cr alloy using PVD-TiAlN coated WC tool. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 44. https://doi.org/10.1007/s40430-018-1552-3
  • Öndin, O., Kıvak, T., Sarıkaya, M., & Yıldırım, Ç. V. (2020). Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel. Tribology International, 148, 106323. https://doi.org/https://doi.org/10.1016/j.triboint.2020.106323
  • Özlü, B. (2021). Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1241-1251.
  • Özlü, B. (2022). Evaluation Of Energy Consumption, Cutting Force, Surface Roughness And Vibration In Machining Toolox 44 Steel Using Taguchi-Based Gray Relational Analysis. Surface Review and Letters, 29(08), 2250103. https://doi.org/10.1142/S0218625X22501037
  • Özlü, B., & Akgün, M. (2024). Evaluation of the machinability performance of PH 13-8 Mo maraging steel used in the aerospace industry. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(2), 687-699. https://doi.org/10.1177/09544089231216035
  • Özlü, B., Akgün, M., & Demir, H. (2023). Evaluation of the effect of hot forging and cooling conditions on the microstructure, hardness and machinability of medium carbon DIN 41Cr4 steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 231-243.
  • Özlü, B., Demir, H., Türkmen, M., & Gündüz, S. (2021). Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(22), 6228-6239. https://doi.org/10.1177/0954406220984498
  • Patel, T., Khanna, N., Yadav, S., Shah, P., Sarikaya, M., Singh, D., Gupta, M. K., & Kotkunde, N. (2021). Machinability analysis of nickel-based superalloy Nimonic 90: a comparison between wet and LCO2 as a cryogenic coolant. The International Journal of Advanced Manufacturing Technology, 113(11), 3613-3628. https://doi.org/10.1007/s00170-021-06793-1
  • Pusavec, F., Deshpande, A., Yang, S., M'Saoubi, R., Kopac, J., Dillon, O. W., & Jawahir, I. S. (2014). Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models. Journal of Cleaner Production, 81, 255-269. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.06.040
  • Salur, E. (2022). Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International, 174, 107677. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107677
  • Sarıkaya, M., & Güllü, A. (2015). Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. Journal of Cleaner Production, 91, 347-357. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.12.020
  • Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2015). Improved Machining Performance with Nanoparticle Enriched Cutting Fluids under Minimum Quantity Lubrication (MQL) Technique: A Review. Materials Today: Proceedings, 2(4), 3545-3551. https://doi.org/https://doi.org/10.1016/j.matpr.2015.07.066
  • Singh, G., Gupta, M. K., Mia, M., & Sharma, V. S. (2018). Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 97(1), 481-494. https://doi.org/10.1007/s00170-018-1911-3
  • Şap, E., Usca, Ü. A., & Uzun, M. (2022). Machining and optimization of reinforced copper composites using different cooling-lubrication conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(9), 399. https://doi.org/10.1007/s40430-022-03678-6
  • Şap, S. (2023a). Machining and Energy Aspect Assessment with Sustainable Cutting Fluid Strategies of Al–12Si Based Hybrid Composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 11, 33-53. https://doi.org/10.1007/s40684-023-00544-1
  • Şap, S. (2023b). Understanding the Machinability and Energy Consumption of Al-Based Hybrid Composites under Sustainable Conditions. Lubricants, 11(3), 111. https://doi.org/https://doi.org/10.3390/lubricants11030111
  • Şap, S., Uzun, M., Usca, Ü. A., Pimenov, D. Y., Giasin, K., & Wojciechowski, S. (2022). Investigation of machinability of Ti–B-SiCp reinforced Cu hybrid composites in dry turning. Journal of Materials Research and Technology, 18, 1474-1487. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.03.049
  • Thakur, A., Gangopadhyay, S., & Mohanty, A. (2015). Investigation on Some Machinability Aspects of Inconel 825 During Dry Turning. Materials and Manufacturing Processes, 30(8), 1026-1034. https://doi.org/10.1080/10426914.2014.984216
  • Tu, L., Lin, L., Liu, C., Zheng, T., Deng, Y., Han, L., An, Q., Ming, W., & Chen, M. (2023). Tool wear characteristics analysis of cBN cutting tools in high-speed turning of Inconel 718. Ceramics International, 49(1), 635-658. https://doi.org/https://doi.org/10.1016/j.ceramint.2022.09.034
  • Usca, Ü. A. (2023). The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T. Polymers, 15(23), 4521. https://www.mdpi.com/2073-4360/15/23/4521
  • Usca, Ü. A., Şap, S., & Uzun, M. (2023). Evaluation of Machinability of Cu Matrix Composite Materials by Computer Numerical Control Milling under Cryogenic LN2 and Minimum Quantity Lubrication. Journal of Materials Engineering and Performance, 32(5), 2417-2431. https://doi.org/10.1007/s11665-022-07262-w
  • Usca, Ü. A., Şap, S., Uzun, M., & Değirmenci, Ü. (2024). Assessment of the machinability and energy consumption characteristics of Cu–6Gr hybrid composites under sustainable operating. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(4), 221. https://doi.org/10.1007/s40430-024-04815-z
  • Usca, Ü. A., Uzun, M., Şap, S., Giasin, K., Pimenov, D. Y., & Prakash, C. (2022). Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions. Journal of Materials Research and Technology, 21, 893-904. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.09.067
  • Wang, C., Li, K., Chen, M., & Liu, Z. (2015). Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays. Journal of Cleaner Production, 108, 145-157. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.06.095
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Ünal Değirmenci 0000-0003-1480-2488

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 9 Mayıs 2024
Kabul Tarihi 29 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Değirmenci, Ü. (2024). Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions. Journal of the Institute of Science and Technology, 14(3), 1228-1239. https://doi.org/10.21597/jist.1481108
AMA Değirmenci Ü. Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2024;14(3):1228-1239. doi:10.21597/jist.1481108
Chicago Değirmenci, Ünal. “Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions”. Journal of the Institute of Science and Technology 14, sy. 3 (Eylül 2024): 1228-39. https://doi.org/10.21597/jist.1481108.
EndNote Değirmenci Ü (01 Eylül 2024) Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions. Journal of the Institute of Science and Technology 14 3 1228–1239.
IEEE Ü. Değirmenci, “Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 3, ss. 1228–1239, 2024, doi: 10.21597/jist.1481108.
ISNAD Değirmenci, Ünal. “Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions”. Journal of the Institute of Science and Technology 14/3 (Eylül 2024), 1228-1239. https://doi.org/10.21597/jist.1481108.
JAMA Değirmenci Ü. Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1228–1239.
MLA Değirmenci, Ünal. “Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions”. Journal of the Institute of Science and Technology, c. 14, sy. 3, 2024, ss. 1228-39, doi:10.21597/jist.1481108.
Vancouver Değirmenci Ü. Determination of Machinability Properties of Nimonic-60 Superalloy Under Sustainable Conditions. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(3):1228-39.