Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri

Yıl 2025, Cilt: 15 Sayı: 2, 509 - 519, 01.06.2025

Öz

2p uyarılmış durumunda, hidrostatik basınç ve sıcaklığın GaAs/Ga1-xAlxAs küresel kuantum noktasındaki yabancı atom self- polarizasyonu ve bağlanma enerjisi üzerindeki etkileri, etkin kütle yaklaşımı altında varyasyonel yöntem ile hesaplanmıştır. Bağlanma enerjisi ve yabancı atom self-polarizasyonu, sıcaklık, hidrostatik basınç, yabancı atomun konumu ve nokta yarıçapının bir fonksiyonu olarak incelenmiştir. Sonuçlar, yabancı atom self-polarizasyonunun ve bağlanma enerjisinin hidrostatik basınca ve sıcaklığa bağlı olduğunu göstermektedir. Ayrıca, bağlanma enerjisi hidrostatik basınçla artarken sıcaklık ile azalmakta, yabancı atom self-polarizasyonu ise hidrostatik basınçla azalırken sıcaklık ile artmaktadır. Bununla birlikte, sıcaklık ve hidrostatik basıncın etkisi altında yabancı atom self-polarizasyonunun hesaplanması, yabancı atomun sistemdeki konumu hakkında önemli bilgiler vermektedir.

Kaynakça

  • Akankan, O., Erdogan, I., & Akbas, H. (2006). Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E: Low-dimensional Systems and Nanostructures, 35(1), 217-221.
  • Akbas H, Sucu S, Minez S, Dane C, Akankan O and Erdogan I, (2016). Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure, Superlattices and Microstructures, 94, 131-137.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Bastard G, (1981). Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Başer, P., Altuntas, I., & Elagoz, S. (2016). The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices and Microstructures, 92, 210-216.
  • Bella RSD, Navaneethakrishnan K, (2004). Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brandi, H. S., Latgé, A., & Oliveira, L. E. (2002). Magnetic-field and laser effects on the electronic and donor states in semiconducting quantum dots. Journal of applied physics, 92(8), 4209-4212.
  • Branis, S. V., Li, G., & Bajaj, K. K., (1993). Hydrogenic impurities in quantum wires in the presence of a magnetic field. Physical Review B, 47(3), 1316.
  • Brown JW, Spector HN, (1986). Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, (2014). Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299 303.
  • Erdogan I, Akankan O, Akbas H, (2006a). Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, (2006b). Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Erdogan, I., Akankan, O., & Akbas, H. (2009). Effects of hydrostatic pressure on the self-polarization in GaAs/Ga1− x Alx As quantum wells under the electric field. Physica E: Low-dimensional Systems and Nanostructures, 42(2), 136-140.
  • Fraizzoli S, Bassani F, Buczko R, (1990). Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Greene RL, Bajaj KK, (1985). Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Hassanabadi, H., & Rajabi, A. A. (2009). Energy levels of a spherical quantum dot in a confining potential. Physics Letters A, 373(6), 679-681.
  • Johnson NF, (1995). Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Kirak, M., Altinok, Y., & Yilmaz, S. A. İ. T. (2013). The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. Journal of Luminescence, 136, 415-421.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, (2017). The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mese, A. I. (2021). Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology, 11(1), 212-220.
  • Mese A. I. (2018). The Effect Of Pressure On Excıted State Bındıng Energy, Expectatıon Value Of The Electron-Impurıty And Impurıty Self-Polarızatıon In A Gaas-Ga1-Xalxas Spherıcal Quantum Dot, Internatıonal Scıentıfıc Conference 16-17 November 2018, Gabrovo, Bulgaria
  • Mikhail IFI, Ismail IMM, (2010). Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400.
  • Montenegro NP, Merchancano STP, (1992). Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, (2004). Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, (2009). Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rajashabala, S., & Navaneethakrishnan, K. (2006). Effective masses for donor binding energies in quantum well systems. Modern Physics Letters B, 20(24), 1529-1541.
  • Restrepo, R. L., Miranda, G. L., Duque, C. A., & Mora-Ramos, M. E. (2011). Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga1− xAlxAs multiple quantum wells. Journal of luminescence, 131(5), 1016-1021.
  • Rezaei, G., & Kish, S. S. (2012). Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 45, 56-60.
  • Rezaei, G., Mousavi, S., & Sadeghi, E. (2012). External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B: Condensed Matter, 407(13), 2637-2641.
  • Rezaei, G., Taghizadeh, S. F., & Enshaeian, A. A. (2012). External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1562-1566.
  • Sadeghi E, (2009). Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Safwan S.A., Nagwa El Meshad, Assma Saleh, Hekmat M. Hassanein, (2020). Stark shift of hydrogenic and non-hydrogenic donor impurity excited states in parabolic quantum dot: Under the effect of electric field and temperature, Physica E: Low-dimensional Systems and Nanostructures, 118, 113882.
  • Safwan, S. A., Saleh, A., Hassanein, H. M., & El Meshed, N. (2018). Hydrostatic pressure and magnetic field effect on the excited states in inverse parabolic quantum dot. Current Applied Physics, 18(1), 34-39.
  • Sivakami A, Gayathri V, (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sucu S, Mese AI, Okan SE, (2008). The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Sucu, S., Minez, S. & Erdogan, I, (2021). Self-polarization of a donor impurity for the first excited state in an Ga1-xAlxAs/GaAs quantum well. Indian J Phys 95 1691–1695.
  • Ulas, M., Erdogan, I., Cicek, E., & Dalgıc, S. S. (2005). Self polarization in GaAs–(Ga, Al) As quantum well wires: electric field and geometrical effects. Physica E: Low-dimensional Systems and Nanostructures, 25(4), 515-520.
  • Zhu JL, Xiong JJ, Gu BL, (1990). Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.
  • Zhu, J. L., & Chen, X. (1994). Spectrum and binding of an off-center donor in a spherical quantum dot. Physical Review B, 50(7), 4497.

Effects of Hydrostatic Pressure and Temperature on İmpurity Self-Polarization and Binding Energy in GaAs/Ga1-xAlxAs Spherical Quantum Dot

Yıl 2025, Cilt: 15 Sayı: 2, 509 - 519, 01.06.2025

Öz

The effects of hydrostatic pressure and temperature on impurity self-polarization and binding energy in GaAs/Ga1-xAlxAs spherical quantum dot in 2p excited state were calculated by variational method under effective mass approach. Binding energy and impurity self-polarization were investigated as a function of temperature, hydrostatic pressure, impurity position and dot radius. The results show that impurity self-polarization and binding energy depend on hydrostatic pressure and temperature. In addition, binding energy increases with hydrostatic pressure and decreases with temperature, while impurity self-polarization decreases with hydrostatic pressure and increases with temperature. However, calculation of impurity self-polarization under the effect of temperature and hydrostatic pressure provides important information about the position of impurity in the system.

Kaynakça

  • Akankan, O., Erdogan, I., & Akbas, H. (2006). Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E: Low-dimensional Systems and Nanostructures, 35(1), 217-221.
  • Akbas H, Sucu S, Minez S, Dane C, Akankan O and Erdogan I, (2016). Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure, Superlattices and Microstructures, 94, 131-137.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Bastard G, (1981). Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Başer, P., Altuntas, I., & Elagoz, S. (2016). The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices and Microstructures, 92, 210-216.
  • Bella RSD, Navaneethakrishnan K, (2004). Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brandi, H. S., Latgé, A., & Oliveira, L. E. (2002). Magnetic-field and laser effects on the electronic and donor states in semiconducting quantum dots. Journal of applied physics, 92(8), 4209-4212.
  • Branis, S. V., Li, G., & Bajaj, K. K., (1993). Hydrogenic impurities in quantum wires in the presence of a magnetic field. Physical Review B, 47(3), 1316.
  • Brown JW, Spector HN, (1986). Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, (2014). Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299 303.
  • Erdogan I, Akankan O, Akbas H, (2006a). Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, (2006b). Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Erdogan, I., Akankan, O., & Akbas, H. (2009). Effects of hydrostatic pressure on the self-polarization in GaAs/Ga1− x Alx As quantum wells under the electric field. Physica E: Low-dimensional Systems and Nanostructures, 42(2), 136-140.
  • Fraizzoli S, Bassani F, Buczko R, (1990). Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Greene RL, Bajaj KK, (1985). Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Hassanabadi, H., & Rajabi, A. A. (2009). Energy levels of a spherical quantum dot in a confining potential. Physics Letters A, 373(6), 679-681.
  • Johnson NF, (1995). Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Kirak, M., Altinok, Y., & Yilmaz, S. A. İ. T. (2013). The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. Journal of Luminescence, 136, 415-421.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, (2017). The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mese, A. I. (2021). Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology, 11(1), 212-220.
  • Mese A. I. (2018). The Effect Of Pressure On Excıted State Bındıng Energy, Expectatıon Value Of The Electron-Impurıty And Impurıty Self-Polarızatıon In A Gaas-Ga1-Xalxas Spherıcal Quantum Dot, Internatıonal Scıentıfıc Conference 16-17 November 2018, Gabrovo, Bulgaria
  • Mikhail IFI, Ismail IMM, (2010). Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400.
  • Montenegro NP, Merchancano STP, (1992). Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, (2004). Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, (2009). Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rajashabala, S., & Navaneethakrishnan, K. (2006). Effective masses for donor binding energies in quantum well systems. Modern Physics Letters B, 20(24), 1529-1541.
  • Restrepo, R. L., Miranda, G. L., Duque, C. A., & Mora-Ramos, M. E. (2011). Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga1− xAlxAs multiple quantum wells. Journal of luminescence, 131(5), 1016-1021.
  • Rezaei, G., & Kish, S. S. (2012). Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 45, 56-60.
  • Rezaei, G., Mousavi, S., & Sadeghi, E. (2012). External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B: Condensed Matter, 407(13), 2637-2641.
  • Rezaei, G., Taghizadeh, S. F., & Enshaeian, A. A. (2012). External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1562-1566.
  • Sadeghi E, (2009). Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Safwan S.A., Nagwa El Meshad, Assma Saleh, Hekmat M. Hassanein, (2020). Stark shift of hydrogenic and non-hydrogenic donor impurity excited states in parabolic quantum dot: Under the effect of electric field and temperature, Physica E: Low-dimensional Systems and Nanostructures, 118, 113882.
  • Safwan, S. A., Saleh, A., Hassanein, H. M., & El Meshed, N. (2018). Hydrostatic pressure and magnetic field effect on the excited states in inverse parabolic quantum dot. Current Applied Physics, 18(1), 34-39.
  • Sivakami A, Gayathri V, (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sucu S, Mese AI, Okan SE, (2008). The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Sucu, S., Minez, S. & Erdogan, I, (2021). Self-polarization of a donor impurity for the first excited state in an Ga1-xAlxAs/GaAs quantum well. Indian J Phys 95 1691–1695.
  • Ulas, M., Erdogan, I., Cicek, E., & Dalgıc, S. S. (2005). Self polarization in GaAs–(Ga, Al) As quantum well wires: electric field and geometrical effects. Physica E: Low-dimensional Systems and Nanostructures, 25(4), 515-520.
  • Zhu JL, Xiong JJ, Gu BL, (1990). Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.
  • Zhu, J. L., & Chen, X. (1994). Spectrum and binding of an off-center donor in a spherical quantum dot. Physical Review B, 50(7), 4497.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Madde Fiziği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ali İhsan Meşe 0000-0002-3901-590X

Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 21 Kasım 2024
Erken Görünüm Tarihi 24 Mayıs 2025
Yayımlanma Tarihi 1 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Meşe, A. İ. (2025). Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Journal of the Institute of Science and Technology, 15(2), 509-519.
AMA Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2025;15(2):509-519.
Chicago Meşe, Ali İhsan. “Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 15, sy. 2 (Haziran 2025): 509-19.
EndNote Meşe Aİ (01 Haziran 2025) Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Journal of the Institute of Science and Technology 15 2 509–519.
IEEE A. İ. Meşe, “Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 2, ss. 509–519, 2025.
ISNAD Meşe, Ali İhsan. “Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 15/2 (Haziran2025), 509-519.
JAMA Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:509–519.
MLA Meşe, Ali İhsan. “Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology, c. 15, sy. 2, 2025, ss. 509-1.
Vancouver Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(2):509-1.