Research Article
BibTex RIS Cite

Spectroscopic Characterization, Electronic and NonLinear Optical Properties of 2-N-Formylaminothiophenol Compound

Year 2018, , 179 - 190, 30.06.2018
https://doi.org/10.21597/jist.428373

Abstract

In this study, the characterization 2-N-formylaminothiophenol has been carried out by quantum

chemical method and vibrational spectral techniques. For this purpose, firstly studied compound has been optimized

using B3LYP and HF method 6-311G++(d,p) the basic set). The values calculated IR frequencies using the same

methods and the basic set of 2-formylaminothiophenol were calculated using Gaussian 09W computer program in

gas phase. The founded values are multiplied by appropriate adjustment factors. Theoretical infrared spectrums

were obtained according to HF and B3LYP methods. Ved4f program was used for theoretically identification of

calculated IR data. Also, 13C-NMR and 1H-NMR chemical shift values according to the method GIAO by obtained

optimized structure were calculated in DMSO solvent. Theoretically and experimentally obtained values according

to exp=a+b. δ calc Eq. were plotted by the SigmaPlot program. In the theoretical part of the study, UV-vis values in

ethanol were theoretically calculated using Time Dependent-Density Functional Theory (TD-DFT). Additionally,

the title compound was found bond angles, bond lengths, the dipole moments, mulliken charges, HOMO-LUMO

energy, total energy of the molecule, ionization potential, electron affinity, molecular softness, molecular hardness

and electronegativity. Finally, non-linear optical properties of the relevant compound; polarity calculations were

made in single point energy calculation, and the polarizability, hyperpolarizability values were calculated.

References

  • Aggarwal MD, Stephens J, Batra AK, Lal RB, 2003. Bulk Growth and characterization of semiorganic nonlinear optical materials. Journal of Optoelectronics and Advanced Materials, 5(3): 555‐562.
  • Apaydın F, 1991. Magnetik rezonans. Hacettepe Üniversitesi, 3: 6-8.
  • Atalay Y, Avcı D, 2007. Theoretical studies of molecular structure and vibrational spectra of melaminium citrate. Spectrochimica Acta Part A, 67: 327–333.
  • Becke AD, 1988. Density-functional exchange energy approximation with correct asymptotic behavior. Physical Review A, 3098-3100.
  • Beytur M, 2014. Bazı yeni beş üyeli heterosiklik bileşiklerin sentezi ve bazı özelliklerinin incelenmesi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 709s.
  • Burda JV, Zeizinger M, Leszczynski J, 2005. Hydration process as an activation of trans and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters. Journal of Computational Chemistry, 26 (9): 907-914.
  • Dennington R, Keith T, Millam J, 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, 2009. Gaussian Inc., (Wallingford, CT).
  • Fessenden RJ, Fessenden JS, 1986. “Organic chemistry”, Third Edition, Brooks, Cole Publishing Company, California. 1226 p.
  • Fukui K. 1982, Role of frontier orbitals in chemical reactions, Science, 747-754.
  • Gans P, 1971. Vibrating molecules. Chapman and Hall, 18-59.
  • Govindarajan, M., Periandy, S., & Carthigayen, K. (2012). FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 411-422.
  • Gökçe H, Bahçeli S, Akyıldırım O, Yüksek H, Gürsoy Kol Ö, 2013. The Syntheses, molecular structures, spectroscopic properties (IR, Micro–Raman, NMR and UV–vis) and DFT calculations of antioxidant 3–alkyl–4–[3–methoxy–4–(4–methylbenzoxy)benzylidenamino]–4,5–dihydro–1H–1,2,4–triazol–5–one molecules. Letters in Organic Chemistry, 10: 395-441.
  • Gökçe H, Akyıldırım O, Bahçeli S, Yüksek H, Gürsoy Kol O, 2014. The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]–4,5–dihydro–1H–1,2,4–triazol–5–one molecule investigated by a joint spectroscopic and quantum chemical calculations. Journal of Molecular Structure, 1056-1057: 273–284.
  • Gümüş PH, Tamer Ö, Avcı D, Atalay Y, 2015. 4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Dergisi, 3; 303-311.
  • Isin, D. O., & Karakus, N. (2015). Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium. Journal of the Taiwan Institute of Chemical Engineers, 50, 306-313.
  • İkizler AA, 1996. Organik kimyaya giriş, Dördüncü Baskı, KTÜ Basımevi, Trabzon, Türkiye, 398s.
  • Jamróz MH, 2004. Vibrational energy distribution analysis. VEDA 4 program, Warsaw.
  • Kaczor AA, Pitucha M, Karczmarzyk Z, Wysocki W, Rzymowska J, Matosiuk D, 2013. Structural and molecular docking studies of 4-benzyl-3-[(1-methylpyrrol-2-yl)methyl]-4,5-dihydro-1h-1,2,4-triazol-5-one with anticancer activity. Medicinal Chemistry, 9 (3): 313-328.
  • Kaczor AA, Tomasz T, Karczmarzyk Z, Wysocki W, Fruzinski A, Brodacka M, Matosiuk D, Monika M, 2014. Structural Studies on N-(1-naphthyl)-3-amino-5-oxo-4-phenyl-1Hpyrazole- 1-carboxamide with Antibacterial Activity. Letters in Organic Chemistry, 11(1): 40-48.
  • Kazici M, Bozar S, Yuksel SA, Ongul F, Gokce H, Gunes S, Goreci CY, 2016. Theoretical and experimental investigations of the 2-(4-chlorophenyl)-3-{[5-(2-cyano-2-phenylethenyl)]furan-2-yl}acrylonitrile molecule as a potential acceptor in organic solar cells. Nanotechnology, 27(23): 234003.
  • Lee C, Yang W, R. Parr G, 1998. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 785-789.
  • Lee SY, 1998. Molecular structure and vibrational spectra of biphenyl in the ground and the lowest triplet states. Density Functional Theory Study, Bulletin of the Korean Chemical Society, 19(1); 93-98.
  • Merrick JP, Moran D, Radom L, 2007. An evaluation of harmonic vibrational frequency scale factors. Journal of Physical Chemistry A, 111(45); 11683-11700.
  • Mulliken RS, 1955. Electronic population analysis on LCAO–MO molecular wave functions. Journal of Chemical Physics, 23: 1833–1840.
  • Rostom SAF, Shalaby MA, El-Demellawy MA 2003. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. European Journal of Medicinal Chemistry, 38: 959-974.
  • Pitucha M, Karczmarzyk Z, Wysocki W, Kaczor AA, Matosiuk D, 2011. Experimental and theoretical investigations on the keto–enol tautomerism of 4-substituted 3-[1-methylpyrrol-2-yl)methyl]-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Journal of Molecular Structure, 994: 313-320.
  • Preat J, Jacquemin D, Wathelet V, Andre JM, Parpete EA, 2006. TD-DFT Investigation of the UV spectra of pyranone derivatives. The Journal of Physical Chemistry A, 110(26): 8144-8150.
  • Shokhmkar M, Raissi H, Mollania F, 2014. Molecular structure, conformational stability, energetic and intramolecular hydrogen bonding in ground, and electronic excited state of 3-mercapto propeneselenal. Structural Chemistry, 25 (4): 1153-1164.
  • Starosta R, Bazanow B, Barszczewski W, 2010. Chalcogenides of the aminomethylphosphines derived from 1-methylpiperazine, 1-ethylpiperazine and morpholine: NMR, DFT and structural studies for determination of electronic and steric properties of the phosphines. Dalton Transactions, 39: 7547-7555.
  • Tamer Ö, Avcı D, Atalay Y, 2015a. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)-picolinate complex. Materials Chemistry and Physics, 168: 138-146.
  • Tamer Ö, Avcı D, Atalay Y, 2015b. The effects of electronegative substituent atoms on structural, vibrational, electronic and NLO properties of some 4-nitrostilbene derivates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 644–650.
  • Thanigaimani K, Khalib NC, Temel E, Arshad S, Razak IA, 2015. Hydration process as an activation of trans- and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters. Journal of Molecular Structure, 1099: 246-256.
  • Turhan Irak Z, Gümüş S, (2017). Heterotricyclic compounds via click reaction: A computational study. Noble International Journal of Scientific Research, 1(7):80-89.
  • Uğurlu G, Kasap E, Kantarci Z, Bahat M, 2007. A theoretical study of the linear, nonlinear optical properties and conformational analysis of 3-phenylthiophene and its fluoro derivatives with torsional dependence. Journal of Molecular Structure, 834-836: 508-515.
  • Wolinski K, Hilton JF, Pulay P, 1990. Journal of the American Chemical Society, 112; 8251.
  • Yüksek H, Gürsoy Ö, Çakmak İ, Alkan M, 2005a. Synthesis and GIAO NMR Calculation for Some New 4,5-Dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1H and 13C Chemical Shifts. Magnetic Resonance in Chemistry, 43; 585-587.
  • Yüksek H, Çakmak İ, Sadi S, Alkan M, 2005b. Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental 1H and 13C chemical shifts. International Journal of Molecular Sciences, 6; 219-229.
  • Zyss J, 1994. Molecular non linear optics: materials, physics and devices, Academic Press, Boston.

2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri

Year 2018, , 179 - 190, 30.06.2018
https://doi.org/10.21597/jist.428373

Abstract

Bu çalışmada, 2-N-formilaminotiyofenol bileşiğinin teorik spektroskopik özellikleri incelenerek bazı
deneysel verilerle mukayese edilmiştir. Bu amaçla, öncelikle çalışılan bileşik B3LYP, HF yöntemleri ve 6-311G++(d,p)
temel seti kullanılarak optimize edilmiştir. Elde edilen optimize yapı yardımıyla GIAO metoduna göre 1H-NMR ve
13C-NMR kimyasal kayma değerleri Gaussian G09W programı vasıtasıyla gaz fazında hesaplanmıştır. δ exp=a+b.
δ calc. eşitliğine göre teorik değerler ile deneysel veriler SigmaPlot programı kullanılarak grafiğe geçirilmiştir.
Elde edilen sonuçlara göre teorik verilerin deneysel verilerle uyumlu oldukları görülmüştür. Çalışmanın teorik
kısmında ayrıca, aynı metodlar ve temel set kullanılarak sentezlenen bileşiğin IR frekans değerleri hesaplanmış,
bulunan değerler belirli uyum faktörleri ile çarpılmıştır. Teorik infrared spektrumları HF ve B3LYP yöntemlerine
göre elde edilmiştir. UV-vis değerleri de etanollü ortamda teorik olarak hesaplanmıştır. İlaveten, molekülün bağ
uzunlukları, bağ açıları, Mulliken atomik yükleri, HOMO-LUMO enerjileri, dipol momentleri, toplam enerjileri,
iyonlaşma potansiyeli, elektron ilgisi, moleküler yumuşaklık, moleküler sertlik ve elektronegatifliği aynı metodlar
ve aynı set kullanılarak hesaplanmıştır. Son olarak, ilgili bileşiğin, çizgisel olmayan optik özellikleri; tek nokta
enerji hesabında polar hesapları yapılarak polarizebiliteleri, hiperpolarizebilite değerleri hesaplanmıştır.

References

  • Aggarwal MD, Stephens J, Batra AK, Lal RB, 2003. Bulk Growth and characterization of semiorganic nonlinear optical materials. Journal of Optoelectronics and Advanced Materials, 5(3): 555‐562.
  • Apaydın F, 1991. Magnetik rezonans. Hacettepe Üniversitesi, 3: 6-8.
  • Atalay Y, Avcı D, 2007. Theoretical studies of molecular structure and vibrational spectra of melaminium citrate. Spectrochimica Acta Part A, 67: 327–333.
  • Becke AD, 1988. Density-functional exchange energy approximation with correct asymptotic behavior. Physical Review A, 3098-3100.
  • Beytur M, 2014. Bazı yeni beş üyeli heterosiklik bileşiklerin sentezi ve bazı özelliklerinin incelenmesi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 709s.
  • Burda JV, Zeizinger M, Leszczynski J, 2005. Hydration process as an activation of trans and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters. Journal of Computational Chemistry, 26 (9): 907-914.
  • Dennington R, Keith T, Millam J, 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, 2009. Gaussian Inc., (Wallingford, CT).
  • Fessenden RJ, Fessenden JS, 1986. “Organic chemistry”, Third Edition, Brooks, Cole Publishing Company, California. 1226 p.
  • Fukui K. 1982, Role of frontier orbitals in chemical reactions, Science, 747-754.
  • Gans P, 1971. Vibrating molecules. Chapman and Hall, 18-59.
  • Govindarajan, M., Periandy, S., & Carthigayen, K. (2012). FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 411-422.
  • Gökçe H, Bahçeli S, Akyıldırım O, Yüksek H, Gürsoy Kol Ö, 2013. The Syntheses, molecular structures, spectroscopic properties (IR, Micro–Raman, NMR and UV–vis) and DFT calculations of antioxidant 3–alkyl–4–[3–methoxy–4–(4–methylbenzoxy)benzylidenamino]–4,5–dihydro–1H–1,2,4–triazol–5–one molecules. Letters in Organic Chemistry, 10: 395-441.
  • Gökçe H, Akyıldırım O, Bahçeli S, Yüksek H, Gürsoy Kol O, 2014. The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]–4,5–dihydro–1H–1,2,4–triazol–5–one molecule investigated by a joint spectroscopic and quantum chemical calculations. Journal of Molecular Structure, 1056-1057: 273–284.
  • Gümüş PH, Tamer Ö, Avcı D, Atalay Y, 2015. 4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Dergisi, 3; 303-311.
  • Isin, D. O., & Karakus, N. (2015). Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium. Journal of the Taiwan Institute of Chemical Engineers, 50, 306-313.
  • İkizler AA, 1996. Organik kimyaya giriş, Dördüncü Baskı, KTÜ Basımevi, Trabzon, Türkiye, 398s.
  • Jamróz MH, 2004. Vibrational energy distribution analysis. VEDA 4 program, Warsaw.
  • Kaczor AA, Pitucha M, Karczmarzyk Z, Wysocki W, Rzymowska J, Matosiuk D, 2013. Structural and molecular docking studies of 4-benzyl-3-[(1-methylpyrrol-2-yl)methyl]-4,5-dihydro-1h-1,2,4-triazol-5-one with anticancer activity. Medicinal Chemistry, 9 (3): 313-328.
  • Kaczor AA, Tomasz T, Karczmarzyk Z, Wysocki W, Fruzinski A, Brodacka M, Matosiuk D, Monika M, 2014. Structural Studies on N-(1-naphthyl)-3-amino-5-oxo-4-phenyl-1Hpyrazole- 1-carboxamide with Antibacterial Activity. Letters in Organic Chemistry, 11(1): 40-48.
  • Kazici M, Bozar S, Yuksel SA, Ongul F, Gokce H, Gunes S, Goreci CY, 2016. Theoretical and experimental investigations of the 2-(4-chlorophenyl)-3-{[5-(2-cyano-2-phenylethenyl)]furan-2-yl}acrylonitrile molecule as a potential acceptor in organic solar cells. Nanotechnology, 27(23): 234003.
  • Lee C, Yang W, R. Parr G, 1998. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 785-789.
  • Lee SY, 1998. Molecular structure and vibrational spectra of biphenyl in the ground and the lowest triplet states. Density Functional Theory Study, Bulletin of the Korean Chemical Society, 19(1); 93-98.
  • Merrick JP, Moran D, Radom L, 2007. An evaluation of harmonic vibrational frequency scale factors. Journal of Physical Chemistry A, 111(45); 11683-11700.
  • Mulliken RS, 1955. Electronic population analysis on LCAO–MO molecular wave functions. Journal of Chemical Physics, 23: 1833–1840.
  • Rostom SAF, Shalaby MA, El-Demellawy MA 2003. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. European Journal of Medicinal Chemistry, 38: 959-974.
  • Pitucha M, Karczmarzyk Z, Wysocki W, Kaczor AA, Matosiuk D, 2011. Experimental and theoretical investigations on the keto–enol tautomerism of 4-substituted 3-[1-methylpyrrol-2-yl)methyl]-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Journal of Molecular Structure, 994: 313-320.
  • Preat J, Jacquemin D, Wathelet V, Andre JM, Parpete EA, 2006. TD-DFT Investigation of the UV spectra of pyranone derivatives. The Journal of Physical Chemistry A, 110(26): 8144-8150.
  • Shokhmkar M, Raissi H, Mollania F, 2014. Molecular structure, conformational stability, energetic and intramolecular hydrogen bonding in ground, and electronic excited state of 3-mercapto propeneselenal. Structural Chemistry, 25 (4): 1153-1164.
  • Starosta R, Bazanow B, Barszczewski W, 2010. Chalcogenides of the aminomethylphosphines derived from 1-methylpiperazine, 1-ethylpiperazine and morpholine: NMR, DFT and structural studies for determination of electronic and steric properties of the phosphines. Dalton Transactions, 39: 7547-7555.
  • Tamer Ö, Avcı D, Atalay Y, 2015a. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)-picolinate complex. Materials Chemistry and Physics, 168: 138-146.
  • Tamer Ö, Avcı D, Atalay Y, 2015b. The effects of electronegative substituent atoms on structural, vibrational, electronic and NLO properties of some 4-nitrostilbene derivates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 644–650.
  • Thanigaimani K, Khalib NC, Temel E, Arshad S, Razak IA, 2015. Hydration process as an activation of trans- and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters. Journal of Molecular Structure, 1099: 246-256.
  • Turhan Irak Z, Gümüş S, (2017). Heterotricyclic compounds via click reaction: A computational study. Noble International Journal of Scientific Research, 1(7):80-89.
  • Uğurlu G, Kasap E, Kantarci Z, Bahat M, 2007. A theoretical study of the linear, nonlinear optical properties and conformational analysis of 3-phenylthiophene and its fluoro derivatives with torsional dependence. Journal of Molecular Structure, 834-836: 508-515.
  • Wolinski K, Hilton JF, Pulay P, 1990. Journal of the American Chemical Society, 112; 8251.
  • Yüksek H, Gürsoy Ö, Çakmak İ, Alkan M, 2005a. Synthesis and GIAO NMR Calculation for Some New 4,5-Dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1H and 13C Chemical Shifts. Magnetic Resonance in Chemistry, 43; 585-587.
  • Yüksek H, Çakmak İ, Sadi S, Alkan M, 2005b. Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental 1H and 13C chemical shifts. International Journal of Molecular Sciences, 6; 219-229.
  • Zyss J, 1994. Molecular non linear optics: materials, physics and devices, Academic Press, Boston.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Onur Akyıldırım This is me 0000-0003-1090-695X

Murat Beytur 0000-0002-7098-5592

Faruk Kardaş This is me 0000-0002-0900-7503

Özlem Gürsoy Kol This is me 0000-0003-2637-9023

Publication Date June 30, 2018
Submission Date November 7, 2017
Acceptance Date November 30, 2017
Published in Issue Year 2018

Cite

APA Akyıldırım, O., Beytur, M., Kardaş, F., Kol, Ö. G. (2018). 2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri. Journal of the Institute of Science and Technology, 8(2), 179-190. https://doi.org/10.21597/jist.428373
AMA Akyıldırım O, Beytur M, Kardaş F, Kol ÖG. 2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri. J. Inst. Sci. and Tech. June 2018;8(2):179-190. doi:10.21597/jist.428373
Chicago Akyıldırım, Onur, Murat Beytur, Faruk Kardaş, and Özlem Gürsoy Kol. “2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik Ve Çizgisel Olmayan Optik Özellikleri”. Journal of the Institute of Science and Technology 8, no. 2 (June 2018): 179-90. https://doi.org/10.21597/jist.428373.
EndNote Akyıldırım O, Beytur M, Kardaş F, Kol ÖG (June 1, 2018) 2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri. Journal of the Institute of Science and Technology 8 2 179–190.
IEEE O. Akyıldırım, M. Beytur, F. Kardaş, and Ö. G. Kol, “2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri”, J. Inst. Sci. and Tech., vol. 8, no. 2, pp. 179–190, 2018, doi: 10.21597/jist.428373.
ISNAD Akyıldırım, Onur et al. “2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik Ve Çizgisel Olmayan Optik Özellikleri”. Journal of the Institute of Science and Technology 8/2 (June 2018), 179-190. https://doi.org/10.21597/jist.428373.
JAMA Akyıldırım O, Beytur M, Kardaş F, Kol ÖG. 2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri. J. Inst. Sci. and Tech. 2018;8:179–190.
MLA Akyıldırım, Onur et al. “2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik Ve Çizgisel Olmayan Optik Özellikleri”. Journal of the Institute of Science and Technology, vol. 8, no. 2, 2018, pp. 179-90, doi:10.21597/jist.428373.
Vancouver Akyıldırım O, Beytur M, Kardaş F, Kol ÖG. 2-N-Formilaminotiyofenol Bileşiğinin Spektroskopik Karakterizasyonu, Elektronik ve Çizgisel Olmayan Optik Özellikleri. J. Inst. Sci. and Tech. 2018;8(2):179-90.