Research Article
BibTex RIS Cite

Dual-Variable Functions on Time Scale

Year 2018, , 265 - 278, 30.09.2018
https://doi.org/10.21597/jist.458652

Abstract

In this paper, we study the concept of dual-variable functions parameterized by the product of

two arbitrary time scales. Firstly, we give some preliminaries of the dual numbers and dual-variable functions.

Secondly, we introduce some properties of the time scales. In the main result, we investigate the limit, derivative,

partial differentiation and Cauchy-Riemann equation of the dual-variable functions on time scales.

References

  • Aktan N, Sarikaya M, Ilarslan K, Yildirim H, 2009. Directional Nabla-derivative and Curves on n-dimensional Time Scales, Acta Appl. Math, (105), 45-63.
  • Aulbach B, Hilger S, 1990. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System, Berlin Academia Verlag, 9-20.
  • Bohner M, Peterson A, 2001. Dynamic Equations on timescales, An Introduction with Applications, Birkhӓuser.
  • Bohner M, Guseinov G, 2006. An introduction to complex functions on products of two time scales, Journal of Difference Equations and Applications, (12), 369-384.
  • Ercan Z, Yuce S, 2011. On properties of dual quaternions, Eur. J. Pure Appl. Math., (4) No.2, 142-146.
  • Hilger S, 1990. Analysis on Measure Chains-a Unified Approach to Continuous and Discrete Calculus, Results math., (18), 18-56.
  • Kramer EE, 1930. Polygenic functions of the dual variable, Amer. J. Math., (52), No.2, 370-376.
  • Messelmi F, 2013. Analysis of Dual Functions, Annual Review of Chaos Theory, Bifurcations and Dynamical Systems, Mechanisms and Machine Theory, (4), 37-54.
  • Onder M, Ugurlu HH, 2013. Normal and Spherical Curves in Dual space Mediterr. J.Math (10), 1527-1537.
  • Study E, 1901. Geometrie der dynamen, Teubner, Leipzig.
  • Veldkamp GR, 1976. On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory, (11), 141-156.
  • Yaglom IM, 1969. A Simple Non- Euclidean Geometry and Its Physical Basis.

Zaman Skalasında Dual Değişkenli Fonksiyonlar

Year 2018, , 265 - 278, 30.09.2018
https://doi.org/10.21597/jist.458652

Abstract

Bu çalışmada, iki keyfi zaman skalasının çarpımı ile parametrelendirilmiş dual değişkenli fonksiyonlar
konusunu inceledik. İlk olarak dual sayıları ve dual değişkenli fonksiyonların bazı özelliklerini verdik. İkinci
olarak zaman skalasının bazı özelliklerini tanıttık. Ana sonuçlar kısmında dual değişkenli fonksiyonların limit,
türev, kısmi diferensiyel ve Cauchy-Riemann denklemini araştırdık.

References

  • Aktan N, Sarikaya M, Ilarslan K, Yildirim H, 2009. Directional Nabla-derivative and Curves on n-dimensional Time Scales, Acta Appl. Math, (105), 45-63.
  • Aulbach B, Hilger S, 1990. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System, Berlin Academia Verlag, 9-20.
  • Bohner M, Peterson A, 2001. Dynamic Equations on timescales, An Introduction with Applications, Birkhӓuser.
  • Bohner M, Guseinov G, 2006. An introduction to complex functions on products of two time scales, Journal of Difference Equations and Applications, (12), 369-384.
  • Ercan Z, Yuce S, 2011. On properties of dual quaternions, Eur. J. Pure Appl. Math., (4) No.2, 142-146.
  • Hilger S, 1990. Analysis on Measure Chains-a Unified Approach to Continuous and Discrete Calculus, Results math., (18), 18-56.
  • Kramer EE, 1930. Polygenic functions of the dual variable, Amer. J. Math., (52), No.2, 370-376.
  • Messelmi F, 2013. Analysis of Dual Functions, Annual Review of Chaos Theory, Bifurcations and Dynamical Systems, Mechanisms and Machine Theory, (4), 37-54.
  • Onder M, Ugurlu HH, 2013. Normal and Spherical Curves in Dual space Mediterr. J.Math (10), 1527-1537.
  • Study E, 1901. Geometrie der dynamen, Teubner, Leipzig.
  • Veldkamp GR, 1976. On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory, (11), 141-156.
  • Yaglom IM, 1969. A Simple Non- Euclidean Geometry and Its Physical Basis.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Hatice Kuşak Samancı 0000-0001-6685-236X

Publication Date September 30, 2018
Submission Date October 3, 2017
Acceptance Date February 26, 2018
Published in Issue Year 2018

Cite

APA Samancı, H. K. (2018). Dual-Variable Functions on Time Scale. Journal of the Institute of Science and Technology, 8(3), 265-278. https://doi.org/10.21597/jist.458652
AMA Samancı HK. Dual-Variable Functions on Time Scale. J. Inst. Sci. and Tech. September 2018;8(3):265-278. doi:10.21597/jist.458652
Chicago Samancı, Hatice Kuşak. “Dual-Variable Functions on Time Scale”. Journal of the Institute of Science and Technology 8, no. 3 (September 2018): 265-78. https://doi.org/10.21597/jist.458652.
EndNote Samancı HK (September 1, 2018) Dual-Variable Functions on Time Scale. Journal of the Institute of Science and Technology 8 3 265–278.
IEEE H. K. Samancı, “Dual-Variable Functions on Time Scale”, J. Inst. Sci. and Tech., vol. 8, no. 3, pp. 265–278, 2018, doi: 10.21597/jist.458652.
ISNAD Samancı, Hatice Kuşak. “Dual-Variable Functions on Time Scale”. Journal of the Institute of Science and Technology 8/3 (September 2018), 265-278. https://doi.org/10.21597/jist.458652.
JAMA Samancı HK. Dual-Variable Functions on Time Scale. J. Inst. Sci. and Tech. 2018;8:265–278.
MLA Samancı, Hatice Kuşak. “Dual-Variable Functions on Time Scale”. Journal of the Institute of Science and Technology, vol. 8, no. 3, 2018, pp. 265-78, doi:10.21597/jist.458652.
Vancouver Samancı HK. Dual-Variable Functions on Time Scale. J. Inst. Sci. and Tech. 2018;8(3):265-78.