Araştırma Makalesi
BibTex RIS Kaynak Göster

Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici

Yıl 2019, , 295 - 301, 01.03.2019
https://doi.org/10.21597/jist.461918

Öz

Bu
çalışmada yeni bir üçlü bant mikrodalga sinyal emici yapı tasarlanmıştır.
Önerilen bu yapı iç içe üç halka rezonatörden oluşmaktadır. En dıştaki halkada
yapının polarizasyon bağımsızlığını sağlaması ve geniş açı emilim yapması için
x-y düzleminde birbirine 45°’lik açı ile yerleştirilen dönel simetrik sekiz
iletken kol vardır. İç tarafta ise biri diğerinin iki katı boyutta iki ayrı
halka rezonatör yerleştirilmiştir. İlk olarak sadece en dıştaki sekiz kol halka
rezonatör yapının emilim grafiği çizdirilmiş ve 4.8 GHz’de 0.87 oranında tek
bir emilim tepe değeri olduğu görülmüştür. Daha sonra yapının içine iki ayrı
halka rezonatör eklenince emilim frekansı az bir farkla 4.7 GHz’e kayarken,
emilim tepe değeri yaklaşık %10 artarak 0.96 değerine yükselmiştir. Ayrıca 2.4
GHz ve 12.6 GHz frekanslarında sırasıyla 0.92 ve 0.94 oranında iki ayrı emilim
tepe değerleri daha görülmüştür. Sonuç olarak her üç emilim tepe değerinin
yapıdaki üç farklı halka rezonatörden kaynaklandığı ve simetrik sekiz adet kol
yapısı gereği polarizasyon mod bağımsız olduğu ve gelen dalga açısına 50°’ye
kadar kararlı davrandığı simülasyon sonuçlarıyla gösterilmiştir.

Kaynakça

  • Araneo R, Lovat G, Celozzi S, 2013. Compact electromagnetic absorbers for frequencies below 1 GHz. Progress In Electromagnetics Research, 143: 67–86.
  • Dincer F, Karaaslan M, Ünal E, Delihacioglu K, Sabah C, 2014. Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Progress In Electromagnetics Research, 144: 123-132.
  • Karaaslan M, Bakır M, 2014. Chiral metamaterial based multifunctional sensor applications. Progress In Electromagnetics Research, 149: 55–67.
  • Katiyar PR, Mahadi WNLBW, 2013. A comparative study on metamaterial for antenna in space application. IEEE International Conference on Space Science and Communication (IconSpace), Melaka-Malaysia, 1-3 July 2013, pp: 74-78.
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ, 2008. Perfect metamaterial absorber. Physical Review Letters, 23: 207402.
  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H, 2010. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 10(7): 2342–2348.
  • Noor A, Hu Z, 2010. Metamaterial dual polarised resistive Hilbert curve array radar absorber. IET Microwaves, Antennas & Propagation, 4(6): 667–673.
  • Ren J, Gong S, Jiang W, 2018. Low-RCS Monopolar Patch Antenna Based on a Dual-Ring Metamaterial Absorber. IEEE Antennas and Wireless Propagation Letters, 17(1): 102-105.
  • Rufangura P, Sabah C, 2015. Dual-band perfect metamaterial absorber for solar cell applications. Vacuum, 120: 68-74.
  • Shchegolkov DY, Azad AK, O'Hara JF, Simakov EI, 2010. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 82 (20): 205117.
  • Tao H, Bingham CM, Pilon D, Fan KB, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD, 2010. A dual band terahertz metamaterial absorber. Journal of Physics D: Applied Physics, 43(22): 225102.
  • Ünal E, Dinçer F, Tetik E, Karaaslan M, Bakir M, Sabah C, 2015. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Journal of Materials Science: Materials in Electronics, 26: 9735–9740.
  • Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL,2009. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 95 (24): 241111.

Polarization Mode Independent Triple Band Microwave Signal Absorber

Yıl 2019, , 295 - 301, 01.03.2019
https://doi.org/10.21597/jist.461918

Öz

In
this study a new triple band microwave signal absorber is designed. This
proposed structure consists of three nested ring resonators. In the outer ring,
there are eight rotationally conductive arms that are symmetrically located in the
x-y plane and placed at an angle of 45° to each other to provide polarization
independence and wide angle absorption. On the inside, there are two nested
ring resonators which are decrease inwardly by ½ radius rate to each other.
Initially, absorption curve of the outermost eight-arm ring resonator is
plotted and a single absorption peak of 0.87 at 4.8 GHz is observed. Then, when
two separate ring resonators were added to the structure, the absorption
frequency shifted slightly to 4.7 GHz while the absorption rate increased by
10% to 0.96. In addition, two separate absorption peaks are observed at the 2.4
GHz and 12.6 GHz frequencies, respectively, at 0.92 and 0.94 rates. Finally,
three absorption peak values have been shown to be caused by three nested ring
resonators in the structure and also owing to the eight rotational symmetric
arm, the structure is polarization mode independent and has an incident wave
angle stability of up to 50°.

Kaynakça

  • Araneo R, Lovat G, Celozzi S, 2013. Compact electromagnetic absorbers for frequencies below 1 GHz. Progress In Electromagnetics Research, 143: 67–86.
  • Dincer F, Karaaslan M, Ünal E, Delihacioglu K, Sabah C, 2014. Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Progress In Electromagnetics Research, 144: 123-132.
  • Karaaslan M, Bakır M, 2014. Chiral metamaterial based multifunctional sensor applications. Progress In Electromagnetics Research, 149: 55–67.
  • Katiyar PR, Mahadi WNLBW, 2013. A comparative study on metamaterial for antenna in space application. IEEE International Conference on Space Science and Communication (IconSpace), Melaka-Malaysia, 1-3 July 2013, pp: 74-78.
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ, 2008. Perfect metamaterial absorber. Physical Review Letters, 23: 207402.
  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H, 2010. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 10(7): 2342–2348.
  • Noor A, Hu Z, 2010. Metamaterial dual polarised resistive Hilbert curve array radar absorber. IET Microwaves, Antennas & Propagation, 4(6): 667–673.
  • Ren J, Gong S, Jiang W, 2018. Low-RCS Monopolar Patch Antenna Based on a Dual-Ring Metamaterial Absorber. IEEE Antennas and Wireless Propagation Letters, 17(1): 102-105.
  • Rufangura P, Sabah C, 2015. Dual-band perfect metamaterial absorber for solar cell applications. Vacuum, 120: 68-74.
  • Shchegolkov DY, Azad AK, O'Hara JF, Simakov EI, 2010. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 82 (20): 205117.
  • Tao H, Bingham CM, Pilon D, Fan KB, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD, 2010. A dual band terahertz metamaterial absorber. Journal of Physics D: Applied Physics, 43(22): 225102.
  • Ünal E, Dinçer F, Tetik E, Karaaslan M, Bakir M, Sabah C, 2015. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Journal of Materials Science: Materials in Electronics, 26: 9735–9740.
  • Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL,2009. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 95 (24): 241111.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Yazarlar

Bilal Tütüncü 0000-0002-7439-268X

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 20 Eylül 2018
Kabul Tarihi 15 Ekim 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Tütüncü, B. (2019). Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Journal of the Institute of Science and Technology, 9(1), 295-301. https://doi.org/10.21597/jist.461918
AMA Tütüncü B. Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Iğdır Üniv. Fen Bil Enst. Der. Mart 2019;9(1):295-301. doi:10.21597/jist.461918
Chicago Tütüncü, Bilal. “Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici”. Journal of the Institute of Science and Technology 9, sy. 1 (Mart 2019): 295-301. https://doi.org/10.21597/jist.461918.
EndNote Tütüncü B (01 Mart 2019) Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Journal of the Institute of Science and Technology 9 1 295–301.
IEEE B. Tütüncü, “Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 1, ss. 295–301, 2019, doi: 10.21597/jist.461918.
ISNAD Tütüncü, Bilal. “Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici”. Journal of the Institute of Science and Technology 9/1 (Mart 2019), 295-301. https://doi.org/10.21597/jist.461918.
JAMA Tütüncü B. Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:295–301.
MLA Tütüncü, Bilal. “Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici”. Journal of the Institute of Science and Technology, c. 9, sy. 1, 2019, ss. 295-01, doi:10.21597/jist.461918.
Vancouver Tütüncü B. Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):295-301.