Araştırma Makalesi
BibTex RIS Kaynak Göster

Termal Sistemler için Oransal-Integral Denetleyici Tasarımı

Yıl 2020, , 128 - 140, 01.03.2020
https://doi.org/10.21597/jist.559806

Öz

Bu çalışmada birinci derece zaman gecikmeli (FOPTD) ve ikinci derece zaman gecikmeli (SOPTD) modellerle ifade edilen termal sistemlerin kararlılık ve performansı için oransal integral (PI) denetleyicilerin elde edileme yöntemi önerilmiştir. Kararlılığa ek olarak, denetleyici parametreleri her bir sistem için arzu edilen kazanç kesim frekansı ve faz payı özelliklerini sağlamak üzere ayarlanmıştır. Denetleyici tasarım şeması açıkça verilmiştir ve sonuçlar literatürden elde edilmiş bazı modeller üzerinde uygulanmıştır. Yöntemi kanıtlamak için görsel örnekler verilmiştir.

Kaynakça

  • Bakošová M, Oravec J, 2014. Robust model predictive control for heat exchanger network. Applied Thermal Engineering 73 (1): 924-930.
  • Barbosa RS, Machado JAT, Ferreira LM, 2004. Tuning of PID controllers based on Bode's ideal transfer function. Nonlinear Dynamics 38: 305-321.
  • Chen W, Zou C, Li X, Li L, 2017. Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline water-based fluid. International Journal of Heat and Mass Transfer 107: 264-270.
  • Cokmez E, Atiç S, Peker F, Kaya I, 2018. Fractional-order PI Controller Design for Integrating Processes Based on Gain and Phase Margin Specifications. IFAC-PapersOnLine 51 (4): 751-756.
  • Fung H, Wang Q, Lee T, 1998. PI Tuning in Terms of Gain and Phase Margins. Automatica 34 (9): 1145-1149.
  • Gabano JD, Poinot T, 2011. Fractional modelling and identification of thermal systems, Signal Processing 91 (3): 531-541.
  • He W, Xu G, Shen R, 2014. Control of temperature uniformity in the temperature chamber with centrifugal acceleration. Journal of Process Control 24 (12): 1-6.
  • Hernandez A, Desideri A, Gusev S, Ionescu CM, Van Den Broek M, Quoilin S, Lemort V, De Keyser R, 2017. Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system. Applied Energy 203: 549-559.
  • Ho WK, Hang CC, Cao LS, 1995. Tuning of PID controllers based on gain and phase margin specifications. Automatica 31 (3): 497-502.
  • Hu K, Zhu J, Zhang W, Liu K, Lu X, 2017. Effects of evaporator superheat on system operation stability of an organic Rankine cycle. Applied Thermal Engineering 111: 793-801.
  • Ilyas SU, Pendyala R, Narahari M, Susin L, 2017. Stability, rheology and thermal analysis of functionalized alumina-thermal oil-based nanofluids for advanced cooling systems. Energy Conversion and Management 142: 215-229.
  • Jaluria Y, 2007. Design and Optimization of Thermal Systems. CRC Press, Boca Raton-USA.
  • Jamal A, Syahputra R, 2016. Heat Exchanger Control Based on Artificial Intelligence Approach. International Journal of Applied Engineering Research 11 (16): 9063-9069.
  • Kar B, Roy PJ, 2018. A Comparative Study Between Cascaded FOPI–FOPD and IOPI–IOPD Controllers Applied to a Level Control Problem in a Coupled Tank System. Control Autom Electr Syst 29 (3): 340-349.
  • Khayyam H, 2013. Adaptive intelligent control of vehicle air conditioning system. Applied Thermal Engineering 51 (1): 1154-1161.
  • Liu J, Wang F, Zhang L, Fang X, Zhang Z, 2014. Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renewable Energy 63: 519-523.
  • Macias M, Sierociuk D, 2012. Fractional order calculus for modeling and fractional PID control of the heating process. 13th International Carpathian Control Conference, Podbanské, Slovakia,
  • Matušů R, Pekař L, 2017. Robust stability of thermal control systems with uncertain parameters: The graphical analysis examples. Applied Thermal Engineering 125: 1157-1163.
  • Miao Z, Han T, Dang J, Ju M, 2017. FOPI/PI controller parameters optimization using PSO with different performance criteria. IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China.
  • Onat C, Hamamci SE, Obuz S, 2012. A Practical PI Tuning Approach For Time Delay Systems. IFAC Proceedings 45 (14): 102-107.
  • Padhee S, 2014. Controller design for temperature control of heat exchanger system: simulation studies. WSEAS Transaction on System and Control 9: 485-491.
  • Pawar SN, Majumder K, Patre BM, Chile RH, 2015. Comparison of PID Controller Tuning Methods for Shell and Tube Type Heat Exchanger System. 2015 Indian Control Conference, Chennai, India.
  • Peralez J, Tona P, Sciarretta A, Dufour P, Nadri M, 2012. Towards model-based control of a steam Rankine process for engine waste heat recovery. 2012 IEEE Vehicle Power and Propulsion Conference, Seoul.
  • Powell KM, Rashid K, Ellingwood K, Tuttle J, Iverson BD, 2017. Hybrid concentrated solar thermal power systems: A review. Renewable and Sustainable Energy Reviews 80: 215-237.
  • Rashid ARM, Siddikhan PM, Selvakumar C, Suresh M, 2017. The performance analysis of PID controller with setpoint filter and anti-integral Windup for a FOPDT thermal process. 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India.
  • Rathod MK, Banerjee J, 2013. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews 18: 246-258.
  • Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, 2016. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. International Journal of Refrigeratio 70: 93-102.
  • Shekher V, Gupta VS, Saroha S, 2016. Analysis of Fractional order PID controller for Ceramic Infrared Heater. International Journal of Engineering Development and Research 4 (1): 43-52.
  • Vasičkaninová A, Bakošová M, 2012. Robust control of heat exchangers. Chemical Engineering Transactions 29: 1363-1368.
  • Vasičkaninová A, Bakošová M, 2016. Robust controller design for a heat exchanger using ℋ2, ℋ∞, ℋ2/ℋ∞, and μ-synthesis approaches. Acta Chimica Slovaca 9 (2): 184-193.
  • Sun Y, Faucher J, Jung D, Vaisman M, McPheeters C, Sharps P, Perl E, Simon J, Steiner M, Friedman D, Lee ML, 2017. Thermal stability of GaAs solar cells for high temperature applications. IEEE 44th Photovoltaic Specialist Conference, Washington, DC, USA.
  • Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J, 2016. Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials 28: 4734-4739.

Proportional-Integral Controller Design for Thermal Systems

Yıl 2020, , 128 - 140, 01.03.2020
https://doi.org/10.21597/jist.559806

Öz

This study proposes to tune proportional integral (PI) controllers for the stability and performance of thermal processes described by first order plus time delay (FOPTD) and second order plus time delay (SOPTD) plants. In addition to stability, parameters of the controllers are tuned to meet the desired gain crossover frequency and phase margin for each system. Design schemes of the controllers are clearly given and the results are applied on some plants provided from the literature. Illustrative examples are given to prove the method.

Kaynakça

  • Bakošová M, Oravec J, 2014. Robust model predictive control for heat exchanger network. Applied Thermal Engineering 73 (1): 924-930.
  • Barbosa RS, Machado JAT, Ferreira LM, 2004. Tuning of PID controllers based on Bode's ideal transfer function. Nonlinear Dynamics 38: 305-321.
  • Chen W, Zou C, Li X, Li L, 2017. Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline water-based fluid. International Journal of Heat and Mass Transfer 107: 264-270.
  • Cokmez E, Atiç S, Peker F, Kaya I, 2018. Fractional-order PI Controller Design for Integrating Processes Based on Gain and Phase Margin Specifications. IFAC-PapersOnLine 51 (4): 751-756.
  • Fung H, Wang Q, Lee T, 1998. PI Tuning in Terms of Gain and Phase Margins. Automatica 34 (9): 1145-1149.
  • Gabano JD, Poinot T, 2011. Fractional modelling and identification of thermal systems, Signal Processing 91 (3): 531-541.
  • He W, Xu G, Shen R, 2014. Control of temperature uniformity in the temperature chamber with centrifugal acceleration. Journal of Process Control 24 (12): 1-6.
  • Hernandez A, Desideri A, Gusev S, Ionescu CM, Van Den Broek M, Quoilin S, Lemort V, De Keyser R, 2017. Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system. Applied Energy 203: 549-559.
  • Ho WK, Hang CC, Cao LS, 1995. Tuning of PID controllers based on gain and phase margin specifications. Automatica 31 (3): 497-502.
  • Hu K, Zhu J, Zhang W, Liu K, Lu X, 2017. Effects of evaporator superheat on system operation stability of an organic Rankine cycle. Applied Thermal Engineering 111: 793-801.
  • Ilyas SU, Pendyala R, Narahari M, Susin L, 2017. Stability, rheology and thermal analysis of functionalized alumina-thermal oil-based nanofluids for advanced cooling systems. Energy Conversion and Management 142: 215-229.
  • Jaluria Y, 2007. Design and Optimization of Thermal Systems. CRC Press, Boca Raton-USA.
  • Jamal A, Syahputra R, 2016. Heat Exchanger Control Based on Artificial Intelligence Approach. International Journal of Applied Engineering Research 11 (16): 9063-9069.
  • Kar B, Roy PJ, 2018. A Comparative Study Between Cascaded FOPI–FOPD and IOPI–IOPD Controllers Applied to a Level Control Problem in a Coupled Tank System. Control Autom Electr Syst 29 (3): 340-349.
  • Khayyam H, 2013. Adaptive intelligent control of vehicle air conditioning system. Applied Thermal Engineering 51 (1): 1154-1161.
  • Liu J, Wang F, Zhang L, Fang X, Zhang Z, 2014. Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renewable Energy 63: 519-523.
  • Macias M, Sierociuk D, 2012. Fractional order calculus for modeling and fractional PID control of the heating process. 13th International Carpathian Control Conference, Podbanské, Slovakia,
  • Matušů R, Pekař L, 2017. Robust stability of thermal control systems with uncertain parameters: The graphical analysis examples. Applied Thermal Engineering 125: 1157-1163.
  • Miao Z, Han T, Dang J, Ju M, 2017. FOPI/PI controller parameters optimization using PSO with different performance criteria. IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China.
  • Onat C, Hamamci SE, Obuz S, 2012. A Practical PI Tuning Approach For Time Delay Systems. IFAC Proceedings 45 (14): 102-107.
  • Padhee S, 2014. Controller design for temperature control of heat exchanger system: simulation studies. WSEAS Transaction on System and Control 9: 485-491.
  • Pawar SN, Majumder K, Patre BM, Chile RH, 2015. Comparison of PID Controller Tuning Methods for Shell and Tube Type Heat Exchanger System. 2015 Indian Control Conference, Chennai, India.
  • Peralez J, Tona P, Sciarretta A, Dufour P, Nadri M, 2012. Towards model-based control of a steam Rankine process for engine waste heat recovery. 2012 IEEE Vehicle Power and Propulsion Conference, Seoul.
  • Powell KM, Rashid K, Ellingwood K, Tuttle J, Iverson BD, 2017. Hybrid concentrated solar thermal power systems: A review. Renewable and Sustainable Energy Reviews 80: 215-237.
  • Rashid ARM, Siddikhan PM, Selvakumar C, Suresh M, 2017. The performance analysis of PID controller with setpoint filter and anti-integral Windup for a FOPDT thermal process. 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India.
  • Rathod MK, Banerjee J, 2013. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews 18: 246-258.
  • Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, 2016. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. International Journal of Refrigeratio 70: 93-102.
  • Shekher V, Gupta VS, Saroha S, 2016. Analysis of Fractional order PID controller for Ceramic Infrared Heater. International Journal of Engineering Development and Research 4 (1): 43-52.
  • Vasičkaninová A, Bakošová M, 2012. Robust control of heat exchangers. Chemical Engineering Transactions 29: 1363-1368.
  • Vasičkaninová A, Bakošová M, 2016. Robust controller design for a heat exchanger using ℋ2, ℋ∞, ℋ2/ℋ∞, and μ-synthesis approaches. Acta Chimica Slovaca 9 (2): 184-193.
  • Sun Y, Faucher J, Jung D, Vaisman M, McPheeters C, Sharps P, Perl E, Simon J, Steiner M, Friedman D, Lee ML, 2017. Thermal stability of GaAs solar cells for high temperature applications. IEEE 44th Photovoltaic Specialist Conference, Washington, DC, USA.
  • Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J, 2016. Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials 28: 4734-4739.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Yazarlar

Bilal Şenol 0000-0002-3734-8807

Uğur Demiroğlu Bu kişi benim 0000-0002-0000-8411

Yayımlanma Tarihi 1 Mart 2020
Gönderilme Tarihi 2 Mayıs 2019
Kabul Tarihi 4 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Şenol, B., & Demiroğlu, U. (2020). Proportional-Integral Controller Design for Thermal Systems. Journal of the Institute of Science and Technology, 10(1), 128-140. https://doi.org/10.21597/jist.559806
AMA Şenol B, Demiroğlu U. Proportional-Integral Controller Design for Thermal Systems. Iğdır Üniv. Fen Bil Enst. Der. Mart 2020;10(1):128-140. doi:10.21597/jist.559806
Chicago Şenol, Bilal, ve Uğur Demiroğlu. “Proportional-Integral Controller Design for Thermal Systems”. Journal of the Institute of Science and Technology 10, sy. 1 (Mart 2020): 128-40. https://doi.org/10.21597/jist.559806.
EndNote Şenol B, Demiroğlu U (01 Mart 2020) Proportional-Integral Controller Design for Thermal Systems. Journal of the Institute of Science and Technology 10 1 128–140.
IEEE B. Şenol ve U. Demiroğlu, “Proportional-Integral Controller Design for Thermal Systems”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 1, ss. 128–140, 2020, doi: 10.21597/jist.559806.
ISNAD Şenol, Bilal - Demiroğlu, Uğur. “Proportional-Integral Controller Design for Thermal Systems”. Journal of the Institute of Science and Technology 10/1 (Mart 2020), 128-140. https://doi.org/10.21597/jist.559806.
JAMA Şenol B, Demiroğlu U. Proportional-Integral Controller Design for Thermal Systems. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:128–140.
MLA Şenol, Bilal ve Uğur Demiroğlu. “Proportional-Integral Controller Design for Thermal Systems”. Journal of the Institute of Science and Technology, c. 10, sy. 1, 2020, ss. 128-40, doi:10.21597/jist.559806.
Vancouver Şenol B, Demiroğlu U. Proportional-Integral Controller Design for Thermal Systems. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(1):128-40.