Research Article
BibTex RIS Cite

CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu

Year 2019, , 2166 - 2173, 01.12.2019
https://doi.org/10.21597/jist.574550

Abstract

Bu çalışmada Au elektrot yüzeyinde CuO-grafen (CuO/G) nanokompozitlerinin tek aşamalı elektrokimyasal sentezi gerçekleştirilmiştir. CuO/G yapılarının analitik karakterizasyonu için XRD ve EDS teknikleri kullanılmıştır. Morfolojik karakterizasyonu ise SEM kullanılarak yapılmıştır. CuO/G kompozitlerinin etanol elektro-oksidasyon reaksiyonunda elektrokatalizör olarak kullanımı incelenmiş ve dönüşümlü voltametri tekniği kullanılarak katalitik özellikleri araştırılmıştır. Etanol oksidasyonu için en yüksek akım yoğunluğu CuO/G kompozitinde elde edilmiştir. Sentezlenen nanokompozit filmin yakıt hücrelerinde elektrot malzemesi olarak kullanılabileceği belirlenmiştir.

References

  • Awasthi R, Singh RN, 2013. Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon, 51: 282–289.
  • Begum H, Ahmed MS, Jeon S, 2017. Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution. ACS Appl. Mater. Interfaces, 9: 39303–39311.
  • Cherevko S, Kulyk N, Chung CH, 2012. Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media. Electrochim. Acta, 69: 190–196.
  • Dursun Z, Karabiberoglu SU, Gelmez B, Basaran A, 2011. Electrocatalytic oxidation of ethanol on various metal ad-layer modified Au(111) electrodes in alkaline solution. Turk. J. Chem., 35: 349–359.
  • Fan Y, Liu PF, Yang ZJ, 2015. CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors. Ionics, 21: 185–190.
  • Gao P, Liu D, 2015. Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide. Microchim. Acta, 182: 1231–1239.
  • Garuthara R, Siripala W, 2006. Photoluminescence characterization of polycrystalline n-type Cu2O films. J. Lumin., 121: 173–178.
  • Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP, 2016. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B, 181: 352–362.
  • Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C, 2011. Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys., 13: 4083-4094.
  • Hu Z, Liu H, 2015. Three-dimensional CuO microflowers as anode materials for Li-ion batteries. Ceram. Int., 41: 8257–8260.
  • İçingür Y, Kireç L, 2011. Bir polimer elektrolit membran yakıt pilinde kullanılmak üzere gaz akış plakaları tasarımı ve denenmesi, Politeknik Dergisi, 14: 31-37.
  • Julkapli NM, Bagheri S, 2015. Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy, 40: 948–979.
  • Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW, 2013. Review: direct ethanol fuel cells, Int. J. Hydrogen Energy, 38: 9438–9453.
  • Katoch A, Choi SW, Kim JH, Lee JH, Lee JS, Kim SS, 2015. Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers. Sens. Actuators B, 214: 111–116.
  • Koçak S, Dursun Z, Ertaş FN, 2011. Electrocatalytic oxidation of methanol at Pd and Pt ad-layer modified Au(111) electrodes in alkaline solution. Turk. J. Chem., 35: 711–722.
  • Koper MTM, 2011. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale, 3: 2054–2073.
  • Li G, Jianga L, Jianga Q, Wang S, Sun G, 2011. Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta, 56: 7703–7711.
  • Li Y, Zhong Y, Zhang Y, Weng W, Li S, 2015. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens. Actuators B, 206: 735–743.
  • Liu X, Cui S, Sun Z, Du P, 2015. Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim. Acta, 160: 202–208.
  • Luo D, Li Y, Liu J, Feng H, Qian D, Peng S, Jiang J, Liu Y, 2013. One-step solution-phase synthesis of a novel RGO-Cu2O-TiO2 ternary nanocomposite with excellent cycling stability for supercapacitors. J. Alloys Compd., 581: 303–307.
  • Ma Y, Li H, Wang R, Wang H, Lv W, Ji S, 2015. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J. Power Sources, 289: 22–25.
  • Nagaraju DH, Devaraj S, Balaya P, 2014. Palladium nanoparticles anchored on graphene nanosheets: methanol, ethanol oxidation reactions and their kinetic studies. Mater. Res., Bull. 60: 150–157.
  • ÖztürkDoğan H, Öznülüer T, Demir Ü, 2018. Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation. Appl. Catal. B Environ., 235: 56-65.
  • ÖztürkDoğan H, Urhan BK, Öznülüer T, Demir Ü, 2019a. One-pot electrochemical synthesis of lead oxide-electrochemically reduced graphene oxide nanostructures and their electrocatalytic applications. IEEE Sensors Journal, 19: 4781-4788.
  • ÖztürkDoğan H, Eryiğit M, Temur E, Özer TÖ, 2019b. Electrochemical fabrication of Prussian blue nanocube-decorated electroreduced graphene oxide for amperometric sensing of NADH. Electroanalysis, 31: 905 –912.
  • Pan L, Tang J, Wang F, 2013. Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties. Cent. Eur. J. Chem., 11: 763–773.
  • Pandey RK, Lakshminarayanan V, 2012. Ethanol electrocatalysis on gold and conducting polymer nanocomposites: a study of the kinetic parameters. Appl. Catal. B Environ., 125: 271–281.
  • Park H, Han TH, 2014. Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors. Macromol. Res., 22: 809–812.
  • Rao L, Jiang YX, Zhang BW, You LX, Li ZH, Sun SG, 2014. Electrocatalytic oxidation of ethanol, Prog. Chem., 26: 727–736.
  • Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G, 2015. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd., 632: 321–325.
  • Soundaram N, Chandramohan R, Valanarasu S, Thomas R, Kathalingam A, 2015. Studies on SILAR deposited Cu2O and ZnO films for solar cell applications. J. Mater. Sci. Mater. Electron., 26: 5030–5036.
  • Urhan BK, Demir Ü, 2019. Electrochemical fabrication of Ni or Ni(OH)2@Ni nanoparticle-decorated reduced graphene oxide for supercapacitor applications. Electrochimica Acta, 302: 109-118.
  • Wang C, Liu J, Huang X, Wang H, Zheng Y, Lin L, Wang S, Chen S, Jin Y, 2014. Cupric oxide nanowires assembled by nanoparticles in situ with enhancing electrocatalytic oxidation of ascorbic acid. Appl. Surf. Sci., 292: 291–296.
  • Wang J, Zhao F, Cao J, Liu Y, Wang B, 2015. Enhanced electrochemical performance of Cu2O-modified Li4Ti5O12 anode material for lithium-ion batteries. Ionics, 21: 2155–2160.
  • Wang L, Li Q, Zhan T, Xu Q, 2014. A review of Pd-based electrocatalyst for the ethanol oxidation reaction in alkaline medium. Adv. Mater. Res. Energy Dev., 860–863: 826–830.
  • Yang YJ, Li W, Chen X, 2012. Highly enhanced electrocatalytic oxidation of glucose on Cu(OH)2/CuO nanotube arrays modified copper electrode. J. Solid State Electrochem., 16: 2877–2881.
  • Yılmaz A, Şevik S, 2017. Sodyum borhidrür (NaBH4) destekli bir hidrojen/hava PEM yakıt hücresi ile elektrik üretiminin deneysel analizi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 7:216-227.
  • Yue GH, Zhang Y, Zhang XQ, Wang CG, Zhao YC, Peng DL, 2015. Synthesis of Cu2O mesocrystal and its application in photocatalysis. Appl. Phys. A, 118: 763–767.
  • Zhang J, Liu J, Peng Q, Wang X, Li Y, 2006. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater., 18: 867–871.
  • Zhang J, Ma J, Zhang S, Wang W, Chen Z, 2015. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B, 211: 385–391.
  • Zhang X, Hu Y, Zhu D, Xie A, Shen Y, 2016. A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries. Ceram. Int., 42: 1833–1839.
  • Zhao X, Wang P, Yan Z, Ren N, 2015. Room temperature photoluminescence properties of CuO nanowire arrays. Opt. Mater., 42: 544–547.
  • Zhao Y, Song X, Yin Z, Song Q, 2013. One-step self-assembled synthesis of CuO with tunable hierarchical structures and their electrocatalytic properties for nitrite oxidation in aqueous media. J. Colloid Interface Sci., 396: 29–38.
  • Zhou WJ, Li, WZ, Song, SQ, 2004. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, J. Power Sources, 131: 217-218.

Electro-oxidation of Ethanol on CuO-graphene Nanocomposites

Year 2019, , 2166 - 2173, 01.12.2019
https://doi.org/10.21597/jist.574550

Abstract

In this study, electrochemical deposition of CuO-graphene (CuO/G) nanocomposites on Au electrode was performed via one-pot electrochemical deposition technique. XRD and EDS techniques were used to for analytical characterization of CuO/G films. Then, morphological characterization of composite was carried out by SEM. The Au-CuO/G electrode was examined as an electrocatalyst for ethanol electro-oxidation reaction and properties of electrocatalyst was investigated by using cyclic voltammetry. The highest current density for ethanol electro-oxidation was determined at CuO/G modified electrode. Also, as-prepared CuO/G nanocomposites can be used to as electrode in fuel cell applications.

References

  • Awasthi R, Singh RN, 2013. Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon, 51: 282–289.
  • Begum H, Ahmed MS, Jeon S, 2017. Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution. ACS Appl. Mater. Interfaces, 9: 39303–39311.
  • Cherevko S, Kulyk N, Chung CH, 2012. Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media. Electrochim. Acta, 69: 190–196.
  • Dursun Z, Karabiberoglu SU, Gelmez B, Basaran A, 2011. Electrocatalytic oxidation of ethanol on various metal ad-layer modified Au(111) electrodes in alkaline solution. Turk. J. Chem., 35: 349–359.
  • Fan Y, Liu PF, Yang ZJ, 2015. CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors. Ionics, 21: 185–190.
  • Gao P, Liu D, 2015. Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide. Microchim. Acta, 182: 1231–1239.
  • Garuthara R, Siripala W, 2006. Photoluminescence characterization of polycrystalline n-type Cu2O films. J. Lumin., 121: 173–178.
  • Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP, 2016. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B, 181: 352–362.
  • Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C, 2011. Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys., 13: 4083-4094.
  • Hu Z, Liu H, 2015. Three-dimensional CuO microflowers as anode materials for Li-ion batteries. Ceram. Int., 41: 8257–8260.
  • İçingür Y, Kireç L, 2011. Bir polimer elektrolit membran yakıt pilinde kullanılmak üzere gaz akış plakaları tasarımı ve denenmesi, Politeknik Dergisi, 14: 31-37.
  • Julkapli NM, Bagheri S, 2015. Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy, 40: 948–979.
  • Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW, 2013. Review: direct ethanol fuel cells, Int. J. Hydrogen Energy, 38: 9438–9453.
  • Katoch A, Choi SW, Kim JH, Lee JH, Lee JS, Kim SS, 2015. Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers. Sens. Actuators B, 214: 111–116.
  • Koçak S, Dursun Z, Ertaş FN, 2011. Electrocatalytic oxidation of methanol at Pd and Pt ad-layer modified Au(111) electrodes in alkaline solution. Turk. J. Chem., 35: 711–722.
  • Koper MTM, 2011. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale, 3: 2054–2073.
  • Li G, Jianga L, Jianga Q, Wang S, Sun G, 2011. Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta, 56: 7703–7711.
  • Li Y, Zhong Y, Zhang Y, Weng W, Li S, 2015. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens. Actuators B, 206: 735–743.
  • Liu X, Cui S, Sun Z, Du P, 2015. Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim. Acta, 160: 202–208.
  • Luo D, Li Y, Liu J, Feng H, Qian D, Peng S, Jiang J, Liu Y, 2013. One-step solution-phase synthesis of a novel RGO-Cu2O-TiO2 ternary nanocomposite with excellent cycling stability for supercapacitors. J. Alloys Compd., 581: 303–307.
  • Ma Y, Li H, Wang R, Wang H, Lv W, Ji S, 2015. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J. Power Sources, 289: 22–25.
  • Nagaraju DH, Devaraj S, Balaya P, 2014. Palladium nanoparticles anchored on graphene nanosheets: methanol, ethanol oxidation reactions and their kinetic studies. Mater. Res., Bull. 60: 150–157.
  • ÖztürkDoğan H, Öznülüer T, Demir Ü, 2018. Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation. Appl. Catal. B Environ., 235: 56-65.
  • ÖztürkDoğan H, Urhan BK, Öznülüer T, Demir Ü, 2019a. One-pot electrochemical synthesis of lead oxide-electrochemically reduced graphene oxide nanostructures and their electrocatalytic applications. IEEE Sensors Journal, 19: 4781-4788.
  • ÖztürkDoğan H, Eryiğit M, Temur E, Özer TÖ, 2019b. Electrochemical fabrication of Prussian blue nanocube-decorated electroreduced graphene oxide for amperometric sensing of NADH. Electroanalysis, 31: 905 –912.
  • Pan L, Tang J, Wang F, 2013. Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties. Cent. Eur. J. Chem., 11: 763–773.
  • Pandey RK, Lakshminarayanan V, 2012. Ethanol electrocatalysis on gold and conducting polymer nanocomposites: a study of the kinetic parameters. Appl. Catal. B Environ., 125: 271–281.
  • Park H, Han TH, 2014. Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors. Macromol. Res., 22: 809–812.
  • Rao L, Jiang YX, Zhang BW, You LX, Li ZH, Sun SG, 2014. Electrocatalytic oxidation of ethanol, Prog. Chem., 26: 727–736.
  • Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G, 2015. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd., 632: 321–325.
  • Soundaram N, Chandramohan R, Valanarasu S, Thomas R, Kathalingam A, 2015. Studies on SILAR deposited Cu2O and ZnO films for solar cell applications. J. Mater. Sci. Mater. Electron., 26: 5030–5036.
  • Urhan BK, Demir Ü, 2019. Electrochemical fabrication of Ni or Ni(OH)2@Ni nanoparticle-decorated reduced graphene oxide for supercapacitor applications. Electrochimica Acta, 302: 109-118.
  • Wang C, Liu J, Huang X, Wang H, Zheng Y, Lin L, Wang S, Chen S, Jin Y, 2014. Cupric oxide nanowires assembled by nanoparticles in situ with enhancing electrocatalytic oxidation of ascorbic acid. Appl. Surf. Sci., 292: 291–296.
  • Wang J, Zhao F, Cao J, Liu Y, Wang B, 2015. Enhanced electrochemical performance of Cu2O-modified Li4Ti5O12 anode material for lithium-ion batteries. Ionics, 21: 2155–2160.
  • Wang L, Li Q, Zhan T, Xu Q, 2014. A review of Pd-based electrocatalyst for the ethanol oxidation reaction in alkaline medium. Adv. Mater. Res. Energy Dev., 860–863: 826–830.
  • Yang YJ, Li W, Chen X, 2012. Highly enhanced electrocatalytic oxidation of glucose on Cu(OH)2/CuO nanotube arrays modified copper electrode. J. Solid State Electrochem., 16: 2877–2881.
  • Yılmaz A, Şevik S, 2017. Sodyum borhidrür (NaBH4) destekli bir hidrojen/hava PEM yakıt hücresi ile elektrik üretiminin deneysel analizi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 7:216-227.
  • Yue GH, Zhang Y, Zhang XQ, Wang CG, Zhao YC, Peng DL, 2015. Synthesis of Cu2O mesocrystal and its application in photocatalysis. Appl. Phys. A, 118: 763–767.
  • Zhang J, Liu J, Peng Q, Wang X, Li Y, 2006. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater., 18: 867–871.
  • Zhang J, Ma J, Zhang S, Wang W, Chen Z, 2015. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B, 211: 385–391.
  • Zhang X, Hu Y, Zhu D, Xie A, Shen Y, 2016. A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries. Ceram. Int., 42: 1833–1839.
  • Zhao X, Wang P, Yan Z, Ren N, 2015. Room temperature photoluminescence properties of CuO nanowire arrays. Opt. Mater., 42: 544–547.
  • Zhao Y, Song X, Yin Z, Song Q, 2013. One-step self-assembled synthesis of CuO with tunable hierarchical structures and their electrocatalytic properties for nitrite oxidation in aqueous media. J. Colloid Interface Sci., 396: 29–38.
  • Zhou WJ, Li, WZ, Song, SQ, 2004. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, J. Power Sources, 131: 217-218.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Hülya Doğan 0000-0002-4072-7744

Publication Date December 1, 2019
Submission Date June 10, 2019
Acceptance Date July 18, 2019
Published in Issue Year 2019

Cite

APA Doğan, H. (2019). CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu. Journal of the Institute of Science and Technology, 9(4), 2166-2173. https://doi.org/10.21597/jist.574550
AMA Doğan H. CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu. J. Inst. Sci. and Tech. December 2019;9(4):2166-2173. doi:10.21597/jist.574550
Chicago Doğan, Hülya. “CuO-Grafen Nanokompozitlerinde Etanol Elektrooksidasyonu”. Journal of the Institute of Science and Technology 9, no. 4 (December 2019): 2166-73. https://doi.org/10.21597/jist.574550.
EndNote Doğan H (December 1, 2019) CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu. Journal of the Institute of Science and Technology 9 4 2166–2173.
IEEE H. Doğan, “CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu”, J. Inst. Sci. and Tech., vol. 9, no. 4, pp. 2166–2173, 2019, doi: 10.21597/jist.574550.
ISNAD Doğan, Hülya. “CuO-Grafen Nanokompozitlerinde Etanol Elektrooksidasyonu”. Journal of the Institute of Science and Technology 9/4 (December 2019), 2166-2173. https://doi.org/10.21597/jist.574550.
JAMA Doğan H. CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu. J. Inst. Sci. and Tech. 2019;9:2166–2173.
MLA Doğan, Hülya. “CuO-Grafen Nanokompozitlerinde Etanol Elektrooksidasyonu”. Journal of the Institute of Science and Technology, vol. 9, no. 4, 2019, pp. 2166-73, doi:10.21597/jist.574550.
Vancouver Doğan H. CuO-grafen Nanokompozitlerinde Etanol Elektrooksidasyonu. J. Inst. Sci. and Tech. 2019;9(4):2166-73.