Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi

Yıl 2019, , 2088 - 2096, 01.12.2019
https://doi.org/10.21597/jist.595150

Öz

Bu çalışmada Cu(In,Ga)(Se1-yTey)2 ince filmleri, külçe formundaki yapının elektron demeti ile buharlaştırılıp yüksek sıcaklıkta tavlanması ile elde edildi. Örneklerin X-ışını kırınım desenleri (XRD), Raman spektrumları, yüzey görüntüleri ile atomik konsantrasyon ölçümleri alınarak katkısız ve düşük Te katkılı örneklerin yapısal özellikleri ayrıntılı olarak incelenerek karşılaştırıldı. XRD desenlerinde, katkısız CIGS ince filminde, Cu(In,Ga)Se2 ve CuIn3Se5 gibi bir faz ayrışımının ortaya çıktığı, Te katkısı ile beraber faz ayrışımının ortadan kalktığı görüldü. Örneklere ait A1 Raman modlarının deneysel değerleri, teorik bir yaklaşımla elde edilen değerler ile karşılaştırıldı. Yüzey fotoğrafları incelendiğinde, Te katkısı ile beraber film yüzeyinin daha düzgün (uniform) hale geldiği ve tanelerin mikron-altı boyutlarında oluştuğu görüldü. Benzer şekilde, yapıdaki kompozisyon profilinin iyileştiği (Ga miktarının arttığı) ve hedeflenen miktarda Te’ün neredeyse yapıya girdiği görüldü.

Kaynakça

  • Aissaoui O, Bechiri L, Mehdaoui S, Benslim N, Benabdeslem M, Portier X, Lei H, Doualan J, Nouet H, Otmani A, 2009. Study of Flash Evaporated CuIn1− x GaxTe2 (x= 0, 0.5 and 1) Thin Films. Thin Solid Films, 517(7): 2171-2174.
  • Amin N, 2011. Promises of Cu(In,Ga)Se2 Thin Film Solar Cells From the Perspective of Material Properties, Fabrication Methods and Current Research Challenges. Journal of Applied Sciences, 11(3): 401-410.
  • Atasoy Y, Başol B, Olğar M, Tomakin M, Bacaksız E, 2018. Cu(In,Ga)(Se,Te)2 Films Formed on Metal Foil Substrates by a Two-Stage Process Employing Electrodeposition and Evaporation. Thin Solid Films, 649: 30-37.
  • Atasoy Y, Başol B, Polat İ, Tomakin M, Parlak M, Bacaksız E, 2015. Cu(In,Ga)(Se,Te)2 Pentenary Thin Films Formed by Reaction of Precursor Layers. Thin Solid Films, 592: 189-194.
  • Basol BM, 1993. Preparation Techniques for Thin-Film Solar-Cell Materials - Processing Perspective. Japanese Journal of Applied Physics, 32(S3): 35-40.
  • Diaz R, Leon M, 1995. Effect of the Composition and Anion Vacancies in the Band Gap and Band Levels of Cu–In–Se–Te Thin Films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(6): 2803-2807.
  • Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock HW, Werner JH, 2001. Back Surface Band Gap Gradings in Cu(In, Ga)Se2 Solar Cells. Thin Solid Films, 387(1): 11-13.
  • Erkan S, Başol BM, Atasoy Y, Çiriş A, Yüksel ÖF, Bacaksız E, 2019. Cu(In,Ga)Te2 Film Growth by A Two-Stage Technique Utilizing Rapid Thermal Processing. Semiconductor Science and Technology, 34(3): 035011-035018.
  • Fiat S, Koralli P, Bacaksiz E, Giannakopoulos K, Kompitsas M, Manolakos D, Çankaya G, 2013. The Influence of Stoichiometry and Annealing Temperature on the Properties of CuIn0.7Ga0.3Se2 and CuIn0.7Ga0.3Te2 Thin Films. Thin Solid Films, 545: 64-70.
  • Fiat S, Polat I, Bacaksiz E, Çankaya G, Koralli P, Manolakos DE, Kompitsas M, 2014. Optical and Structural Properties of Nanostructured CuIn0. 7Ga0. 3(Se (1− x) Te x)2 Chalcopyrite Thin Films—Effect of Stoichiometry and Annealing. Journal of nanoscience and nanotechnology, 14(7): 5002-5010.
  • Herberberholz R, Carter MJ, 1995. Investigation of the chalcogen interdiffusion in CuIn(TeSe)2 thin films, Solar Energy Materials and Solar Cells, 44 (1996): 357-366.
  • Kato T, Wu J-L, Hirai Y, Sugimoto H, Bermudez V, 2019. Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. Ieee Journal of Photovoltaics, 9(1): 325-330.
  • Kim WK, 2006. Study of Reaction Pathways and Kinetics in Cu(InxGa1-x)Se2 Thin Film Growth. University of Florida, Doctoral Thesis.
  • Liao K-H, Su C-Y, Ding Y-T, 2013. Effects of Ga Accumulation on the Microstructure of Cu(In1− x,Gax) Se2 Thin Films During Selenization. Journal of Alloy and Compound, 581: 250-256.
  • Mandati S, Sarada BV, Dey SR, Joshi SV, 2013. Improved Photoelectrochemical Performance of Cu(In, Ga)Se2 Thin Films Prepared by Pulsed Electrodeposition. Journal of Renewable and Sustainable Energy, 5(3): 031602- 031610.
  • Marudachalam M, Birkmire R, Hichri H, Schultz J, Swartzlander A, Al-Jassim M, 1997. Phases, Morphology, and Diffusion in CuIn1− x,GaxSe2 Thin Films. Journal of Applied Physics, 82(6): 2896-2905.
  • Mudryi A, Gremenok V, Karotki A, Zalesski V, Yakushev M, Luckert F, Martin R, 2010. Structural and Optical Properties of Thin Films of Cu(In,Ga)Se2 Semiconductor Compounds. bJournal of Applied spectroscopy, 77(3): 371-377.
  • Neumann H, 1985. Lattice Vibrations in AIBIIIC2VI Chalcopyrite Compounds. Helvetica Physica Acta, 58(2-3): 337-346.
  • Palm J, Probst V, Brummer A, Stetter W, Tölle R, Niesen T, Visbec S, Hernandez O, Wendl M, Vogt H, 2003. CIS Module Pilot Processing Applying Concurrent Rapid Selenization and Sulfurization of Large Area Thin Film Precursors. Thin Solid Films, 431: 514-522.
  • Papadimitriou D, Esser N, Xue C, 2005. Structural Properties of Chalcopyrite Thin Films Studied by Raman Spectroscopy. Physica Status Solidi (b), 242(13): 2633-2643.
  • Rincón C, Wasim S, Marın G, Delgado J, Huntzinger J, Zwick A, Galibert J, 1998. Raman Spectra Of The Ordered Vacancy Compounds CuIn3Se5 and CuGa3Se5. Applied Physic Letters, 73(4): 441-443.
  • Sun Y, Lin S, Li W, Cheng S, Zhang Y, Liu Y, Liu W, 2017. Review on Alkali Element Doping in Cu(In,Ga) Se2 Thin Films and Solar Cells. Engineering, 3(4): 452-459.
  • Xue D, Betzler K, Hesse H, 2000. Dielectric Properties of I-III-VI2-type Chalcopyrite Semiconductors. Physical Review B, 62(20): 13546-13551.

Investigation of Structural Properties of Low Te Doped CuInGaSe2 Thin Films

Yıl 2019, , 2088 - 2096, 01.12.2019
https://doi.org/10.21597/jist.595150

Öz

In this study, Cu(In,Ga)(Se1-yTey)2 thin films were obtained by evaporation of the bulk form compound with electron beam followed by annealing at elevated temperature. The X-ray diffraction patterns (XRD), Raman spectra, surface images and atomic concentration measurements of the samples were analyzed and compared with the structural properties of the undoped and low Te doped samples. In XRD patterns, it was observed that a phase separation such as Cu(In,Ga)Se2 and CuIn3Se5 formed in the CIGS thin film, but with the Te content, this phase separation was disappeared. Experimental values of A1 Raman modes of the samples were compared with the values obtained by a theoretical approach. It was seen that the film surface became more uniform and the particles formed in sub-micron dimensions as the Te content increase in the film. Similarly, it was observed that the composition profile in the structure improved (the amount of Ga increased) and that the targeted amount of Te almost entered the structure.

Kaynakça

  • Aissaoui O, Bechiri L, Mehdaoui S, Benslim N, Benabdeslem M, Portier X, Lei H, Doualan J, Nouet H, Otmani A, 2009. Study of Flash Evaporated CuIn1− x GaxTe2 (x= 0, 0.5 and 1) Thin Films. Thin Solid Films, 517(7): 2171-2174.
  • Amin N, 2011. Promises of Cu(In,Ga)Se2 Thin Film Solar Cells From the Perspective of Material Properties, Fabrication Methods and Current Research Challenges. Journal of Applied Sciences, 11(3): 401-410.
  • Atasoy Y, Başol B, Olğar M, Tomakin M, Bacaksız E, 2018. Cu(In,Ga)(Se,Te)2 Films Formed on Metal Foil Substrates by a Two-Stage Process Employing Electrodeposition and Evaporation. Thin Solid Films, 649: 30-37.
  • Atasoy Y, Başol B, Polat İ, Tomakin M, Parlak M, Bacaksız E, 2015. Cu(In,Ga)(Se,Te)2 Pentenary Thin Films Formed by Reaction of Precursor Layers. Thin Solid Films, 592: 189-194.
  • Basol BM, 1993. Preparation Techniques for Thin-Film Solar-Cell Materials - Processing Perspective. Japanese Journal of Applied Physics, 32(S3): 35-40.
  • Diaz R, Leon M, 1995. Effect of the Composition and Anion Vacancies in the Band Gap and Band Levels of Cu–In–Se–Te Thin Films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(6): 2803-2807.
  • Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock HW, Werner JH, 2001. Back Surface Band Gap Gradings in Cu(In, Ga)Se2 Solar Cells. Thin Solid Films, 387(1): 11-13.
  • Erkan S, Başol BM, Atasoy Y, Çiriş A, Yüksel ÖF, Bacaksız E, 2019. Cu(In,Ga)Te2 Film Growth by A Two-Stage Technique Utilizing Rapid Thermal Processing. Semiconductor Science and Technology, 34(3): 035011-035018.
  • Fiat S, Koralli P, Bacaksiz E, Giannakopoulos K, Kompitsas M, Manolakos D, Çankaya G, 2013. The Influence of Stoichiometry and Annealing Temperature on the Properties of CuIn0.7Ga0.3Se2 and CuIn0.7Ga0.3Te2 Thin Films. Thin Solid Films, 545: 64-70.
  • Fiat S, Polat I, Bacaksiz E, Çankaya G, Koralli P, Manolakos DE, Kompitsas M, 2014. Optical and Structural Properties of Nanostructured CuIn0. 7Ga0. 3(Se (1− x) Te x)2 Chalcopyrite Thin Films—Effect of Stoichiometry and Annealing. Journal of nanoscience and nanotechnology, 14(7): 5002-5010.
  • Herberberholz R, Carter MJ, 1995. Investigation of the chalcogen interdiffusion in CuIn(TeSe)2 thin films, Solar Energy Materials and Solar Cells, 44 (1996): 357-366.
  • Kato T, Wu J-L, Hirai Y, Sugimoto H, Bermudez V, 2019. Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. Ieee Journal of Photovoltaics, 9(1): 325-330.
  • Kim WK, 2006. Study of Reaction Pathways and Kinetics in Cu(InxGa1-x)Se2 Thin Film Growth. University of Florida, Doctoral Thesis.
  • Liao K-H, Su C-Y, Ding Y-T, 2013. Effects of Ga Accumulation on the Microstructure of Cu(In1− x,Gax) Se2 Thin Films During Selenization. Journal of Alloy and Compound, 581: 250-256.
  • Mandati S, Sarada BV, Dey SR, Joshi SV, 2013. Improved Photoelectrochemical Performance of Cu(In, Ga)Se2 Thin Films Prepared by Pulsed Electrodeposition. Journal of Renewable and Sustainable Energy, 5(3): 031602- 031610.
  • Marudachalam M, Birkmire R, Hichri H, Schultz J, Swartzlander A, Al-Jassim M, 1997. Phases, Morphology, and Diffusion in CuIn1− x,GaxSe2 Thin Films. Journal of Applied Physics, 82(6): 2896-2905.
  • Mudryi A, Gremenok V, Karotki A, Zalesski V, Yakushev M, Luckert F, Martin R, 2010. Structural and Optical Properties of Thin Films of Cu(In,Ga)Se2 Semiconductor Compounds. bJournal of Applied spectroscopy, 77(3): 371-377.
  • Neumann H, 1985. Lattice Vibrations in AIBIIIC2VI Chalcopyrite Compounds. Helvetica Physica Acta, 58(2-3): 337-346.
  • Palm J, Probst V, Brummer A, Stetter W, Tölle R, Niesen T, Visbec S, Hernandez O, Wendl M, Vogt H, 2003. CIS Module Pilot Processing Applying Concurrent Rapid Selenization and Sulfurization of Large Area Thin Film Precursors. Thin Solid Films, 431: 514-522.
  • Papadimitriou D, Esser N, Xue C, 2005. Structural Properties of Chalcopyrite Thin Films Studied by Raman Spectroscopy. Physica Status Solidi (b), 242(13): 2633-2643.
  • Rincón C, Wasim S, Marın G, Delgado J, Huntzinger J, Zwick A, Galibert J, 1998. Raman Spectra Of The Ordered Vacancy Compounds CuIn3Se5 and CuGa3Se5. Applied Physic Letters, 73(4): 441-443.
  • Sun Y, Lin S, Li W, Cheng S, Zhang Y, Liu Y, Liu W, 2017. Review on Alkali Element Doping in Cu(In,Ga) Se2 Thin Films and Solar Cells. Engineering, 3(4): 452-459.
  • Xue D, Betzler K, Hesse H, 2000. Dielectric Properties of I-III-VI2-type Chalcopyrite Semiconductors. Physical Review B, 62(20): 13546-13551.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Yavuz Atasoy 0000-0002-6382-992X

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 22 Temmuz 2019
Kabul Tarihi 3 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Atasoy, Y. (2019). Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 9(4), 2088-2096. https://doi.org/10.21597/jist.595150
AMA Atasoy Y. Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2019;9(4):2088-2096. doi:10.21597/jist.595150
Chicago Atasoy, Yavuz. “Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 9, sy. 4 (Aralık 2019): 2088-96. https://doi.org/10.21597/jist.595150.
EndNote Atasoy Y (01 Aralık 2019) Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 9 4 2088–2096.
IEEE Y. Atasoy, “Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 4, ss. 2088–2096, 2019, doi: 10.21597/jist.595150.
ISNAD Atasoy, Yavuz. “Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 9/4 (Aralık 2019), 2088-2096. https://doi.org/10.21597/jist.595150.
JAMA Atasoy Y. Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:2088–2096.
MLA Atasoy, Yavuz. “Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, c. 9, sy. 4, 2019, ss. 2088-96, doi:10.21597/jist.595150.
Vancouver Atasoy Y. Düşük Tellür Katkılı CuInGaSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(4):2088-96.