Araştırma Makalesi
BibTex RIS Kaynak Göster

Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi

Yıl 2020, , 888 - 899, 01.06.2020
https://doi.org/10.21597/jist.656640

Öz

Torpido tipi insansız sualtı araçları (İSA) günümüzde, sualtı hareketlerinin izlenmesi, okyanus dibi sıcaklık haritalarının çıkarılması, tuzlu su katmanlarının belirlenmesi gibi uzun menzilli görevleri başarı ile yerine getirmektedir. Kayıp arama ve kurtarma, sünger toplama, mayın temizleme, gemi altı bakımı, gemi altı hasarlarının görüntülenmesine yönelik uzman incelemesi işlemleri, tehlikeli derinliklerde görüntü alma, batıkların incelenmesi gibi detaylı bölgesel araştırmalar ise modüler tip İSA’ları ile sağlanmaktadır. Benzer şekilde, İSA’nın sahil güvenliğini sağlama, askeri birtakım görevleri yerine getirme, baraj tabanlarının temizlenmesi, göl, tatlı su kaynakları, sualtı mağaraları, aktif sualtı volkanları, akarsuların denizlere döküldüğü akarsu ağızları gibi alıcı su ortamlarının düzenli kirlilik analizi ve kirlilik haritalarının çıkarılması gibi toplumsal ve doğal yaşamın güvenliğine yönelik önleyici görevleri bulunmaktadır. Meksika Körfezi’nde yaşanan ham petrol sızıntısının yol açtığı çevre felaketi gözleri sondaj platformlarına çevirmiştir. Platform ayaklarının bakımı, boru hatlarının izlenmesi, sızıntı tespiti, su altında kaynak işlemleri gibi tehlikeli işlemler uzaktan kumandalı İSA ile yapılmaktadır. Bu çalışma, 4 serbestlik derecesine sahip bir İSA’nın bilgisayar destekli 3 boyutlu (3D) modellemesini ve model üzerindeki benzetim uygulamalarını ele almaktadır. Benzetim programları sayesinde, yüksek maliyet ve zaman gerektiren testleri en aza indirgemek, hatalı tasarımların yol açacağı hasar ve kayıpların önüne geçmek mümkündür. İSA ve üzerlerindeki ekipmanlar yüksek maliyetlidir. Bu nedenle kullanıcıların, deniz ortamında araç kullanmadan önce simülatörde eğitime almaları gerekir. İSA’nın modellenmesi ve benzetimi üzerine geliştirilen yazılımlar, sualtı araştırmalarındaki başarımı arttırmada önemli bir rol oynayacaktır.

Kaynakça

  • Alamdari S H, Karras G C, Marantos P, Kyriakopoulos K J, 2019. A Robust Predictive Control Approach for Underwater Robotic Vehicles, IEEE Transactions on Control Systems Technology, pp.1-11.
  • Anonim, 2016. http://unity3d.com/learn, ziyaret tarihi : Kasım 2019.
  • Anonim, 2017. http://knowledge.autodesk.com/support/maya/learn-explore.html ziyaret tarihi: Aralık, 2017.Anonim, 2018. https://tr.wikipedia.org › wiki › Autodesk_Maya , ziyaret tarihi : Aralık, 2018.
  • Anonim, 2019. Unity: The leading global game industry software", Aug. 2015, [online] Available: http://unity3d.com/public-relations, ziyaret tarihi: Aralık, 2019
  • Antonelli G . August 21 ,2013. Underwater Robots, Motion and Force Control of Vehicle-Manipulator Systems, 3rd Edition, Springer Publishing, New York.
  • Bian X, Mou C, 2011. Identification of non-linear dynamic model of UUV based on ESN neural network, Proceedings of the 30th Chinese Control Conference, pp.1432-1437, Yantai, China
  • Chikovani, V. V., Sushchenko, O. A., Petrenko, O. V., Yehorov, S. H., 2019. Features of Design of Coriolis Vibratory Gyroscopes Assigned for Unmanned Aerial Vehicles, IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp.194-198, Kiev.
  • DeBitetto P A, july 1995. Fuzzy Logic for Depth Control of Unmanned Undersea Vehicles, IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 20, NO. 3.
  • Dinç M., Hajiyev C, 2015. Integration of Navigation Systems for Autonomous Underwater Vehicles. Journal of Marine Engineering & Technology, Department of Aeronautical Engineering, Istanbul Technical University, İstanbul, Turkey, DOI:10.1080/20464177.2015.1022382.
  • Dorf R C, Bishop R H, 2005. Modern Control Systems, Tenth Edition, Pearson Prentice Hall.
  • Eng Y H, Lau M W, Chin C S, 2014. Added Mass Computation for Control of An Open-Frame Remotely-Operated Vehicle: Application Using WAMIT and MATLAB, Journal of Marine Science and Technology, pp. 405 – 416.
  • Joonyoung K, Kihun K, Hang S C, Woojae S, Kyu-Yeul L, 2002. Depth and Heading Control for Autonomous Underwater Vehicle Using Estimated Hydrodynamic Coefficients, Department of Naval Architecture & Ocean Engineering, Seoul National University, Seoul 151-742, Kore.
  • Ghrairi N, Kpodjedo S, Barrak A, Petrillo F, Khomh F, 2018. The State of Practice on Virtual Reality (VR) Applications: An Exploratory Study on Github and Stack Overflow, 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS), pp.356-366, Lisbon.
  • Kavichai, E, Huang, R, Woo S W, 2019. Quadcopter Movement Control Using Image Processing Techniques, 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp.939-942, Pattaya.
  • Kumar B S, Jayasimman L, Jebaseeli N, 2015. UID Comparison of Multimedia Software international Journal of Advanced Research in Computer Science and Software E 2277-6451.
  • Li C ,Yin C, Lu J , 2009. Automatic 3D scene generation based on Maya, IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, 981-985.
  • Li Y L, Wang L, Song Y, Zhao P, 2017. Rigid Body Dynamics Analysis in Design of Cantilever Beam of Entertainment Equipment Based on Solidworks-Motion, 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pp.69-73, Cape Town.
  • Liu S, Zhao W, 2019. Design and Kinematics Analysis of UPR-UPU-UR Parallel Vector Propulsion Mechanism for Underwater Vehicles, IEEE International Conference on Robotics and Biomimetics (ROBIO),pp.846-851, Dali.
  • Moore C., McKibbin P., 2015. Artemis AUV Payload Development, OCEANS 2015 - MTS/IEEE pp.1-3, Washington
  • Polančec D, Mekterović I, 2017. Developing MOBA games using the Unity game engine, MIPRO 2017, pp.1510-1515, Opatija.
  • Sung L K, Hae J S, Jeong H K, ; Jun M J, Teemu H L, Joonas W, 2014. Using Unity 3D to facilitate mobile augmented reality game development, 2014 IEEE World Forum Conference, 21-26.
  • Tomotaka I, Koji S, Akinori N, 2010. Underwater Robot with a Buoyancy Control System Based on the Spermaceti Oil Hypothesis - Development of the Depth Control System ,The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, Taipei, Taiwan,
  • Vervoort J.H.A.M., 2009. Modeling and Control of an Unmanned Underwater Vehicle .2009. Master Traineeship Report, Sending University: University of technology Eindhoven, Host University: University of Canterbury
  • Yan Z, Xu D, Chen, T, Zhou ,J, Wei, S, Wang Y, 2017. Modeling, Strategy and Control of UUV for Autonomous Underwater Docking Recovery to Moving Platform, Proceedings of the 36th Chinese Control Conference, pp. 4807-4812, Dalian, China
  • Yılmaz S, İnce S, Yakut M, 2013. Derinlik Ve Yön Kontrol Uygulamaları İçin Deney Platformu Tasarımı, Tübitak Araştırma Projesi Final Raporu, Proje No:111E294.
  • Wang X, Tan, C P, Zhou D, 2019. Dynamic Output Feedback Fault Tolerant Control for Unmanned Underwater Vehicles, pp.1-8.
  • Wood A, 15 october 2014. Behind the Scenes: A Study of Autodesk Maya. animation: an interdisciplinary journal , Vol. 9(3) 317–332.
  • Wang S, Mao Z, Zeng C, Gong H, Li,S., Chen B, 2010. A New Method of Virtual Reality Based on Unity3D, 18th International Conference on Geoinformatics, pp.1-5, Beijing.
  • Watanabe, K, Sugano S, Nagai, I, 2019. A Method of Recognizing Obstacles for a Small-sized Autonomous Underwater Vehicle X4-AUV, 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO), pp.310-316, November, Beijing, China.

3D Computer Simulation of a Four DOF Unmanned Underwater Vehicle

Yıl 2020, , 888 - 899, 01.06.2020
https://doi.org/10.21597/jist.656640

Öz

Today, torpedo type unmanned underwater vehicles (UUVs) successfully fulfill long-range tasks such as monitoring underwater movements, extracting ocean bottom temperature maps, and determining saltwater layers. Detailed regional investigations such as lost search and rescue, sponge collection, mine area clearing, under-ship maintenance, under-ship damage inspection, image capture at dangerous depths, and inspecting wrecks are provided with modular type UUVs. Similarly, they are employed for ensuring the coastal guard, performing a number of military tasks, cleaning the dam bases, investigation of underwater caves and active underwater volcanoes. Furthermore, they are frequently used for regular pollution analysis of receiving water bodies such as lakes, freshwater sources, connection of rivers flowing into the seas. The environmental disaster caused by the crude oil spill in the Gulf of Mexico turned the eyes into drilling platforms. Dangerous operations like maintaining feet of platforms, inspection of pipelines, leakage detections and underwater welding operations are done by means of remotely operated vehicles (ROVs). This study deals with computer aided 3D modeling and simulation of an UUV with 4 degrees of freedom. Simulation programs allow to minimize high cost and time-consuming tests and prevent damage and losses caused by faulty designs. For this reason, it is necessary to train the users on simulators before driving in a marine vehicle. The software developed on the modeling and simulation of UUVs will play an important role in increasing the success in underwater research.

Kaynakça

  • Alamdari S H, Karras G C, Marantos P, Kyriakopoulos K J, 2019. A Robust Predictive Control Approach for Underwater Robotic Vehicles, IEEE Transactions on Control Systems Technology, pp.1-11.
  • Anonim, 2016. http://unity3d.com/learn, ziyaret tarihi : Kasım 2019.
  • Anonim, 2017. http://knowledge.autodesk.com/support/maya/learn-explore.html ziyaret tarihi: Aralık, 2017.Anonim, 2018. https://tr.wikipedia.org › wiki › Autodesk_Maya , ziyaret tarihi : Aralık, 2018.
  • Anonim, 2019. Unity: The leading global game industry software", Aug. 2015, [online] Available: http://unity3d.com/public-relations, ziyaret tarihi: Aralık, 2019
  • Antonelli G . August 21 ,2013. Underwater Robots, Motion and Force Control of Vehicle-Manipulator Systems, 3rd Edition, Springer Publishing, New York.
  • Bian X, Mou C, 2011. Identification of non-linear dynamic model of UUV based on ESN neural network, Proceedings of the 30th Chinese Control Conference, pp.1432-1437, Yantai, China
  • Chikovani, V. V., Sushchenko, O. A., Petrenko, O. V., Yehorov, S. H., 2019. Features of Design of Coriolis Vibratory Gyroscopes Assigned for Unmanned Aerial Vehicles, IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp.194-198, Kiev.
  • DeBitetto P A, july 1995. Fuzzy Logic for Depth Control of Unmanned Undersea Vehicles, IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 20, NO. 3.
  • Dinç M., Hajiyev C, 2015. Integration of Navigation Systems for Autonomous Underwater Vehicles. Journal of Marine Engineering & Technology, Department of Aeronautical Engineering, Istanbul Technical University, İstanbul, Turkey, DOI:10.1080/20464177.2015.1022382.
  • Dorf R C, Bishop R H, 2005. Modern Control Systems, Tenth Edition, Pearson Prentice Hall.
  • Eng Y H, Lau M W, Chin C S, 2014. Added Mass Computation for Control of An Open-Frame Remotely-Operated Vehicle: Application Using WAMIT and MATLAB, Journal of Marine Science and Technology, pp. 405 – 416.
  • Joonyoung K, Kihun K, Hang S C, Woojae S, Kyu-Yeul L, 2002. Depth and Heading Control for Autonomous Underwater Vehicle Using Estimated Hydrodynamic Coefficients, Department of Naval Architecture & Ocean Engineering, Seoul National University, Seoul 151-742, Kore.
  • Ghrairi N, Kpodjedo S, Barrak A, Petrillo F, Khomh F, 2018. The State of Practice on Virtual Reality (VR) Applications: An Exploratory Study on Github and Stack Overflow, 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS), pp.356-366, Lisbon.
  • Kavichai, E, Huang, R, Woo S W, 2019. Quadcopter Movement Control Using Image Processing Techniques, 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp.939-942, Pattaya.
  • Kumar B S, Jayasimman L, Jebaseeli N, 2015. UID Comparison of Multimedia Software international Journal of Advanced Research in Computer Science and Software E 2277-6451.
  • Li C ,Yin C, Lu J , 2009. Automatic 3D scene generation based on Maya, IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, 981-985.
  • Li Y L, Wang L, Song Y, Zhao P, 2017. Rigid Body Dynamics Analysis in Design of Cantilever Beam of Entertainment Equipment Based on Solidworks-Motion, 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pp.69-73, Cape Town.
  • Liu S, Zhao W, 2019. Design and Kinematics Analysis of UPR-UPU-UR Parallel Vector Propulsion Mechanism for Underwater Vehicles, IEEE International Conference on Robotics and Biomimetics (ROBIO),pp.846-851, Dali.
  • Moore C., McKibbin P., 2015. Artemis AUV Payload Development, OCEANS 2015 - MTS/IEEE pp.1-3, Washington
  • Polančec D, Mekterović I, 2017. Developing MOBA games using the Unity game engine, MIPRO 2017, pp.1510-1515, Opatija.
  • Sung L K, Hae J S, Jeong H K, ; Jun M J, Teemu H L, Joonas W, 2014. Using Unity 3D to facilitate mobile augmented reality game development, 2014 IEEE World Forum Conference, 21-26.
  • Tomotaka I, Koji S, Akinori N, 2010. Underwater Robot with a Buoyancy Control System Based on the Spermaceti Oil Hypothesis - Development of the Depth Control System ,The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, Taipei, Taiwan,
  • Vervoort J.H.A.M., 2009. Modeling and Control of an Unmanned Underwater Vehicle .2009. Master Traineeship Report, Sending University: University of technology Eindhoven, Host University: University of Canterbury
  • Yan Z, Xu D, Chen, T, Zhou ,J, Wei, S, Wang Y, 2017. Modeling, Strategy and Control of UUV for Autonomous Underwater Docking Recovery to Moving Platform, Proceedings of the 36th Chinese Control Conference, pp. 4807-4812, Dalian, China
  • Yılmaz S, İnce S, Yakut M, 2013. Derinlik Ve Yön Kontrol Uygulamaları İçin Deney Platformu Tasarımı, Tübitak Araştırma Projesi Final Raporu, Proje No:111E294.
  • Wang X, Tan, C P, Zhou D, 2019. Dynamic Output Feedback Fault Tolerant Control for Unmanned Underwater Vehicles, pp.1-8.
  • Wood A, 15 october 2014. Behind the Scenes: A Study of Autodesk Maya. animation: an interdisciplinary journal , Vol. 9(3) 317–332.
  • Wang S, Mao Z, Zeng C, Gong H, Li,S., Chen B, 2010. A New Method of Virtual Reality Based on Unity3D, 18th International Conference on Geoinformatics, pp.1-5, Beijing.
  • Watanabe, K, Sugano S, Nagai, I, 2019. A Method of Recognizing Obstacles for a Small-sized Autonomous Underwater Vehicle X4-AUV, 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO), pp.310-316, November, Beijing, China.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Yazarlar

Serhat Yılmaz 0000-0001-9765-7225

Sadettin Burak Kılcı 0000-0002-6583-8379

Yayımlanma Tarihi 1 Haziran 2020
Gönderilme Tarihi 7 Aralık 2019
Kabul Tarihi 15 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yılmaz, S., & Kılcı, S. B. (2020). Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi. Journal of the Institute of Science and Technology, 10(2), 888-899. https://doi.org/10.21597/jist.656640
AMA Yılmaz S, Kılcı SB. Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2020;10(2):888-899. doi:10.21597/jist.656640
Chicago Yılmaz, Serhat, ve Sadettin Burak Kılcı. “Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi”. Journal of the Institute of Science and Technology 10, sy. 2 (Haziran 2020): 888-99. https://doi.org/10.21597/jist.656640.
EndNote Yılmaz S, Kılcı SB (01 Haziran 2020) Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi. Journal of the Institute of Science and Technology 10 2 888–899.
IEEE S. Yılmaz ve S. B. Kılcı, “Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 2, ss. 888–899, 2020, doi: 10.21597/jist.656640.
ISNAD Yılmaz, Serhat - Kılcı, Sadettin Burak. “Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi”. Journal of the Institute of Science and Technology 10/2 (Haziran 2020), 888-899. https://doi.org/10.21597/jist.656640.
JAMA Yılmaz S, Kılcı SB. Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:888–899.
MLA Yılmaz, Serhat ve Sadettin Burak Kılcı. “Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi”. Journal of the Institute of Science and Technology, c. 10, sy. 2, 2020, ss. 888-99, doi:10.21597/jist.656640.
Vancouver Yılmaz S, Kılcı SB. Dört Serbestlik Dereceli Bir İnsansız Sualtı Aracının 3 Boyutlu Bilgisayar Benzetimi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(2):888-99.

Cited By