SMDO method is a set and trial based optimization algorithm that is developed for online fine-tuning of controller parameters. SMDO method is implemented for several controller tuning applications. It can search parameter space with random backward and forward steps of each parameter. This property reduces risk of testing unstable control system configurations in controller design and thus makes the SMDO method more suitable for online parameter tuning of experimental systems. However, performance of SMDO has not been evaluated previously for benchmark functions in comparison with other well known heuristic optimization methods. This study aims to compare performances of Artificial Bee Colony (ABC), Cuckoo Search Optimization (CK), Particle Swarm Optimization (PSO) and Stochastic Multi-parameters Divergence Optimization (SMDO) methods for benchmark functions. Therefore, a benchmark tests program that is a user-friendly MATLAB GUI is introduced for user. This program can be downloaded from https://www.mathworks.com/matlabcentral/fileexchange/75043-smdo-method-with-benchmark-functions
Alagoz, B. B., Ates, A., & Yeroglu, C. (2013). Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control. Mechatronics, 23(7). https://doi.org/10.1016/j.mechatronics.2013.05.001
Ateş, A. Alagoz, B. B. S. B. C. Y. (2013). Kesir Dereceli PID Kontrolörler İçin Referans Model Tabanlı Optimizasyon Yöntemi. Türkiye Otomatik Kontrol Milli Komitesi 2013 Malatya, 1.
Ates, A., Alagoz, B. B., Chen, Y. Q., Yeroglu, C., & HosseinNia, S. H. (2020). Optimal Fractional Order PID Controller Design for Fractional Order Systems by Stochastic Multi Parameter Divergence Optimization Method with Different Random Distribution Functions. 9–14. https://doi.org/10.1109/iccma46720.2019.8988599
Ates, A., Alagoz, B. B., & Yeroglu, C. (2017). Master–slave stochastic optimization for model-free controller tuning. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 41(2). https://doi.org/10.1007/s40998-017-0029-1
Ateş, A., & Yeroglu, C. (n.d.). SMDO Algoritması ile İki Serbestlik Dereceli FOPID Kontrol Çevrimi Tasarımı Two Degrees of Freedom FOPID Control Loop Design via SMDO Algorithm. 6–11.
Ates, Abdullah, AlagOz, B. B., Tepljakov, A., Petlenkov, E., Yeroglu, C., Kuznetsov, A., & Sobolev, I. (2019). Fractional Order Model Identification of Receptor-Ligand Complexes Formation by Equivalent Electrical Circuit Modeling. 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. https://doi.org/10.1109/IDAP.2019.8875913
Ates, Abdullah, & YEROĞLU, C. (2016). Online Tuning of Two Degrees of Freedom Fractional Order Control Loops. Balkan Journal of Electrical and Computer Engineering, 4(1), 5–11. https://doi.org/10.17694/bajece.52491
Ates, Abdullah, Yeroglu, C., Alagoz, B. B., & Senol, B. (2014). Tuning of fractional order PID with master-slave stochastic multi-parameter divergence optimization method. 2014 International Conference on Fractional Differentiation and Its Applications, ICFDA 2014. https://doi.org/10.1109/ICFDA.2014.6967388
Biswas, A., Mishra, K. K., Tiwari, S., & Misra, A. K. (2013). Physics-Inspired Optimization Algorithms: A Survey. Journal of Optimization. https://doi.org/10.1155/2013/438152
Chopard, B., & Tomassini, M. (2018). Particle swarm optimization. In Natural Computing Series. https://doi.org/10.1007/978-3-319-93073-2_6
Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review. https://doi.org/10.1007/s10462-011-9276-0
Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing. https://doi.org/10.1007/s11047-018-9685-y
Frédéric Bonnans, J., Charles Gilbert, J., Lemaréchal, C., & Sagastizábal, C. A. (2006). Numerical optimization: Theoretical and practical aspects. In Numerical Optimization: Theoretical and Practical Aspects. https://doi.org/10.1007/978-3-540-35447-5
Giagkiozis, I., & Fleming, P. J. (2015). Methods for multi-objective optimization: An analysis. Information Sciences. https://doi.org/10.1016/j.ins.2014.08.071
Kakandikar, G. M., Nandedkar, V. M., Kakandikar, G. M., & Nandedkar, V. M. (2018). Engineering Optimization. In Sheet Metal Forming Optimization. https://doi.org/10.4324/9781315156101-4
Kuhn, H. W., & Tucker, A. W. (2014). Nonlinear programming. In Traces and Emergence of Nonlinear Programming. https://doi.org/10.1007/978-3-0348-0439-4_11
Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software. https://doi.org/10.1016/j.advengsoft.2017.07.002
Nocedal, J., & Wright, S. (2006). Numerical optimization, series in operations research and financial engineering. In Springer.
Rao, S. S. (2009). Engineering Optimization: Theory and Practice: Fourth Edition. In Engineering Optimization: Theory and Practice: Fourth Edition. https://doi.org/10.1002/9780470549124
Unconstained. (n.d.). Retrieved April 16, 2020, from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
Vajda, S., & Dantzig, G. B. (1965). Linear Programming and Extensions. The Mathematical Gazette. https://doi.org/10.2307/3612922
Yang, X. S. (2014). Nature-Inspired Optimization Algorithms. In Nature-Inspired Optimization Algorithms. https://doi.org/10.1016/C2013-0-01368-0
Yang, X. S., & Gandomi, A. H. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations (Swansea, Wales). https://doi.org/10.1108/02644401211235834
Yeroǧlu, C., & Ateş, A. (2014). A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers. Journal of the Franklin Institute, 351(5). https://doi.org/10.1016/j.jfranklin.2013.12.006.
Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox
SMDO method is a set and trial based optimization algorithm that is developed for online fine-tuning of controller parameters. SMDO method is implemented for several controller tuning applications. It can search parameter space with random backward and forward steps of each parameter. This property reduces risk of testing unstable control system configurations in controller design and thus makes the SMDO method more suitable for online parameter tuning of experimental systems. However, performance of SMDO has not been evaluated previously for benchmark functions in comparison with other well known heuristic optimization methods. This study aims to compare performances of Artificial Bee Colony (ABC), Cuckoo Search Optimization (CK), Particle Swarm Optimization (PSO) and Stochastic Multi-parameters Divergence Optimization (SMDO) methods for benchmark functions. Therefore, a benchmark tests program that is a user-friendly MATLAB GUI is introduced for user. This program can be downloaded from https://www.mathworks.com/matlabcentral/fileexchange/75043-smdo-method-with-benchmark-functions
Alagoz, B. B., Ates, A., & Yeroglu, C. (2013). Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control. Mechatronics, 23(7). https://doi.org/10.1016/j.mechatronics.2013.05.001
Ateş, A. Alagoz, B. B. S. B. C. Y. (2013). Kesir Dereceli PID Kontrolörler İçin Referans Model Tabanlı Optimizasyon Yöntemi. Türkiye Otomatik Kontrol Milli Komitesi 2013 Malatya, 1.
Ates, A., Alagoz, B. B., Chen, Y. Q., Yeroglu, C., & HosseinNia, S. H. (2020). Optimal Fractional Order PID Controller Design for Fractional Order Systems by Stochastic Multi Parameter Divergence Optimization Method with Different Random Distribution Functions. 9–14. https://doi.org/10.1109/iccma46720.2019.8988599
Ates, A., Alagoz, B. B., & Yeroglu, C. (2017). Master–slave stochastic optimization for model-free controller tuning. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 41(2). https://doi.org/10.1007/s40998-017-0029-1
Ateş, A., & Yeroglu, C. (n.d.). SMDO Algoritması ile İki Serbestlik Dereceli FOPID Kontrol Çevrimi Tasarımı Two Degrees of Freedom FOPID Control Loop Design via SMDO Algorithm. 6–11.
Ates, Abdullah, AlagOz, B. B., Tepljakov, A., Petlenkov, E., Yeroglu, C., Kuznetsov, A., & Sobolev, I. (2019). Fractional Order Model Identification of Receptor-Ligand Complexes Formation by Equivalent Electrical Circuit Modeling. 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. https://doi.org/10.1109/IDAP.2019.8875913
Ates, Abdullah, & YEROĞLU, C. (2016). Online Tuning of Two Degrees of Freedom Fractional Order Control Loops. Balkan Journal of Electrical and Computer Engineering, 4(1), 5–11. https://doi.org/10.17694/bajece.52491
Ates, Abdullah, Yeroglu, C., Alagoz, B. B., & Senol, B. (2014). Tuning of fractional order PID with master-slave stochastic multi-parameter divergence optimization method. 2014 International Conference on Fractional Differentiation and Its Applications, ICFDA 2014. https://doi.org/10.1109/ICFDA.2014.6967388
Biswas, A., Mishra, K. K., Tiwari, S., & Misra, A. K. (2013). Physics-Inspired Optimization Algorithms: A Survey. Journal of Optimization. https://doi.org/10.1155/2013/438152
Chopard, B., & Tomassini, M. (2018). Particle swarm optimization. In Natural Computing Series. https://doi.org/10.1007/978-3-319-93073-2_6
Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review. https://doi.org/10.1007/s10462-011-9276-0
Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing. https://doi.org/10.1007/s11047-018-9685-y
Frédéric Bonnans, J., Charles Gilbert, J., Lemaréchal, C., & Sagastizábal, C. A. (2006). Numerical optimization: Theoretical and practical aspects. In Numerical Optimization: Theoretical and Practical Aspects. https://doi.org/10.1007/978-3-540-35447-5
Giagkiozis, I., & Fleming, P. J. (2015). Methods for multi-objective optimization: An analysis. Information Sciences. https://doi.org/10.1016/j.ins.2014.08.071
Kakandikar, G. M., Nandedkar, V. M., Kakandikar, G. M., & Nandedkar, V. M. (2018). Engineering Optimization. In Sheet Metal Forming Optimization. https://doi.org/10.4324/9781315156101-4
Kuhn, H. W., & Tucker, A. W. (2014). Nonlinear programming. In Traces and Emergence of Nonlinear Programming. https://doi.org/10.1007/978-3-0348-0439-4_11
Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software. https://doi.org/10.1016/j.advengsoft.2017.07.002
Nocedal, J., & Wright, S. (2006). Numerical optimization, series in operations research and financial engineering. In Springer.
Rao, S. S. (2009). Engineering Optimization: Theory and Practice: Fourth Edition. In Engineering Optimization: Theory and Practice: Fourth Edition. https://doi.org/10.1002/9780470549124
Unconstained. (n.d.). Retrieved April 16, 2020, from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
Vajda, S., & Dantzig, G. B. (1965). Linear Programming and Extensions. The Mathematical Gazette. https://doi.org/10.2307/3612922
Yang, X. S. (2014). Nature-Inspired Optimization Algorithms. In Nature-Inspired Optimization Algorithms. https://doi.org/10.1016/C2013-0-01368-0
Yang, X. S., & Gandomi, A. H. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations (Swansea, Wales). https://doi.org/10.1108/02644401211235834
Yeroǧlu, C., & Ateş, A. (2014). A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers. Journal of the Franklin Institute, 351(5). https://doi.org/10.1016/j.jfranklin.2013.12.006.
Toplam 24 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Bilgisayar Yazılımı
Bölüm
Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Akpamukçu, M., Ateş, A., & Alagöz, B. B. (2020). Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox. Journal of the Institute of Science and Technology, 10(4), 2451-2460. https://doi.org/10.21597/jist.722427
AMA
Akpamukçu M, Ateş A, Alagöz BB. Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2020;10(4):2451-2460. doi:10.21597/jist.722427
Chicago
Akpamukçu, Mehmet, Abdullah Ateş, ve Barış Baykant Alagöz. “Performance Analysis of SMDO Method With Benchmark Functions With Matlab Toolbox”. Journal of the Institute of Science and Technology 10, sy. 4 (Aralık 2020): 2451-60. https://doi.org/10.21597/jist.722427.
EndNote
Akpamukçu M, Ateş A, Alagöz BB (01 Aralık 2020) Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox. Journal of the Institute of Science and Technology 10 4 2451–2460.
IEEE
M. Akpamukçu, A. Ateş, ve B. B. Alagöz, “Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 4, ss. 2451–2460, 2020, doi: 10.21597/jist.722427.
ISNAD
Akpamukçu, Mehmet vd. “Performance Analysis of SMDO Method With Benchmark Functions With Matlab Toolbox”. Journal of the Institute of Science and Technology 10/4 (Aralık 2020), 2451-2460. https://doi.org/10.21597/jist.722427.
JAMA
Akpamukçu M, Ateş A, Alagöz BB. Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:2451–2460.
MLA
Akpamukçu, Mehmet vd. “Performance Analysis of SMDO Method With Benchmark Functions With Matlab Toolbox”. Journal of the Institute of Science and Technology, c. 10, sy. 4, 2020, ss. 2451-60, doi:10.21597/jist.722427.
Vancouver
Akpamukçu M, Ateş A, Alagöz BB. Performance Analysis of SMDO Method with Benchmark Functions with Matlab Toolbox. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(4):2451-60.