Araştırma Makalesi
BibTex RIS Kaynak Göster

Screening of Agro-industrial Wastes and Physical Factors for the Production of α-Amylase from Bacillus licheniformis VO1

Yıl 2021, , 58 - 67, 01.03.2021
https://doi.org/10.21597/jist.780601

Öz

Evaluation of biomass is of great interest in the context of preventing environmental pollution. Agricultural industry wastes and by-products occur in large amounts and cause environmental pollution when left to decay. The use of agro-industrial wastes in solid state fermentation (SSF) technology offers several advantages in the production of antibiotics, pigments, flavors and industrially important enzymes such as amylases, proteases, lipases, cellulases and lipases. α-Amylase is an enzyme that catalyzes the random hydrolysis of starch. These enzymes are used in various biotechnological processes such as textile, paper, food, biofuels, detergents and pharmaceutical industries. In this study, the selected bacterial strain, Bacillus licheniformis VO1, was inoculated into solid state fermentation media containing apple, melon, banana and orange peels, and the highest α-amylase production was obtained from the apple peel medium among the tested solid substrates. Fermentation time, fermentation temperature, initial pH, inoculum size, the effects of nitrogen, carbon and metal sources were examined separately. Maximum α-amylase production was achieved at 45 °C, pH 6.0 and 48 hours. When the effect of various carbon and nitrogen sources added to the fermentation medium where apple peels are examined, the maximum α-amylase production was obtained from the media with starch and yeast extract, respectively. Considering the results obtained, the production of α-amylase from Bacillus licheniformis VO1 can be considered as a potential candidate for future environmental improvement processes, with the use of wastes such as apple peels in the fruit processing industry as a solid state fermentation (SSF).

Kaynakça

  • Abdullah R, Naeem N, Aftab M, Kaleem A, Iqtedar M, Iftikhar T, Naz S, 2018. Enhanced Production of Alpha Amylase by Exploiting Novel Bacterial Co-Culture Technique Employing Solid State Fermentation. Iranian Journal of Science and Technology, Transactions A: Science, 42: 305-312.
  • Akatı MY, 2019. An Overview of Amylase Production by Solid State Fermantation (SSF) since 2010. Journal of Technical Sciences, 9 (1): 1-7.
  • Alghabpoor SS, Panosyan H, Popov Y, Trchounian, A, 2013. Production of Thermostable Alpha-Amylase by Bacillus sp. Iranian S2 using Solid State Fermentation. Electronic Journal of Natural Sciences, 20 (1): 47-50.
  • Ahmed NE, El-Shamy AR, Awad HM, 2020. Optimization and Immobilization of Amylase Produced by Aspergillus terreus using Pomegranate Peel Waste. Bulletin of the National Research Centre, 44 (109): 1-12.
  • Almanaa TN, Vijayaraghavan P, Alharbi NS, Kadaikunnan S, Khaled JM, Alyahya SA, 2020. Solid State Fermentation of Amylase Production from Bacillus subtilis D19 using Agro-Residues. Journal of King Saud University-Science, 32 (2): 1555-1561.
  • Bernfield P, 1955. Amylases, α and β. In, Methods in Enzymology, Vol. 1, pp. 149-158. Academic Press, New York, USA.
  • Dash BK, Rahman MM, Sarker PK, 2015. Molecular İdentification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. BioMed Research International, 2015 (ID: 859805): 1-9.
  • Elmansy EA, Asker MS, El-Kady EM, Hassanein SM, El-Beih FM, 2018. Production and Optimization of α-Amylase from Thermo-Halophilic Bacteria Isolated from Different Local Marine Environments. Bulletin of the National Research Centre, 42 (31): 1-9.
  • El-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa, AM, Ibrahim, I.H, Al-Talhi HA, 2014. Solid Fermentation of Wheat Bran for Hydrolytic Enzymes Production and Saccharification Content by a Local Isolate Bacillus megatherium. BMC Biotechnology, 14 (29): 1-8.
  • Far BE, Ahmadi Y, Khosroushahi AY, Dilmaghani A, 2020. Microbial Alpha-Amylase Production: Progress, Challenges and Perspectives. Advanced Pharmaceutical Bulletin, 10 (3): 350-358.
  • Issac R, Prince R, 2015. Production of Alpha-Amylase by Solid State Fermentation using Bacillus cereus MTCC 7524 and Bacillus licheniformis MTCC 7445 from Dairy Sludge-A Comparative Study. International Journal of Pharmtech Research, 8: 111-117.
  • Lal N, Jyoti J, Sachan P, 2017. Optimization of Carbon Sources for the Amylase Production and Growth of Bacillus licheniformis JAR-26 under Submerged Fermentation. Indian Journal of Experimental Biology, 4 (1): 31-36.
  • López-Gómez JP, Manan MA, Webb C, 2020. Solid-State Fermentation of Food İndustry Wastes: In Food Industry Wastes (Second Edition). Elsevier, pp, 135-161. London-United Kingdom.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein Measurement with the Folin-Phenol Reagents. Journal of Biology and Chemistry, 48: 17-25.
  • Maity S, Mallik S, Basuthakur R, Gupta S, 2015. Optimization of Solid State Fermentation Conditions and Characterization of Thermostable Alpha Amylase from Bacillus subtilis (ATCC 6633). Journal of Bioprocessing and Biotechniques, 5 (4): 1-7.
  • María AC, Ravanal C, Andrews BA, Asenjo JA, 2019. Heterologous Expression and Biochemical Characterization of a Novel Cold-Active α-Amylase from the Antarctic Bacteria Pseudoalteromonas sp. 2-3. Protein Expression and Purification, 155: 78-85.
  • Melnichuk N, Braia MJ, Anselmi PA, Meini MR, Romanini D, 2020. Valorization of Two Agroindustrial Wastes to Produce Alpha-Amylase Enzyme from Aspergillus Oryzae by Solid State Fermentation. Waste Management, 106: 155-161.
  • Mitchell DA, Berovic M, Krieger N, 2006. Introduction to Solid-State Fermentation Bioreactors. In: Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation, Springer-Verlag, Berlin, Heidelberg, pp 33-45.
  • Msarah MJ, Ibrahim I, Hamid AA, Aqma WS, 2020. Optimisation and Production of Alpha Amylase from Thermophilic Bacillus spp. and İts Application in Food Waste Biodegradation. Heliyon, 6 (6): 1-9.
  • Mukherjee AK, Borah M, Rai SK, 2009. To Study The Influence of Different Components of Fermentable Substrates on Induction of Extracellular α-Amylase Synthesis by Bacillus subtilis DM-03 in Solid-State Fermentation and Exploration of Feasibility for Inclusion of α-Amylase in Laundry Detergent. Biochemical Engineering Journal, 43 (2): 149-156.
  • Nusrat A, Rahman SR, 2007. Comparative Studies on the Production of Extracellular α-Amylase by Three Mesophilic Bacillus Isolates. Bangladesh Journal of Microbiology, 24 (2): 129-132.
  • Nwagu TN, Okolo BN, 2011. Extracellular Amylase Production of a Thermotolerant Fusarium sp. Isolated from Eastern Nigerian Soil. Brazilian Archives of Biology and Technology, 54 (4): 649-658.
  • Oliva RV Uribe JAG, 2020. Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. Sustainability, 495: 1-12.
  • Pranay K, Padmadeo S.R., Prasad B, 2019. Production of Amylase from Bacillus subtilis sp. Strain KR1 Under Solid State Fermentation on Different Agrowastes. Biocatalysis and Agricultural Biotechnology 21 (ID: 101300): 1-8.
  • Raul D, Biswas T, Mukhopadhyay S, Das SK, Gupta S, 2014. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. Biochemistry Research International, 2014 (ID: 568141): 1-5.
  • Rao UMJL, Satyanarayana T, 2009. Hyperthermostable, Ca2+ Independent, and High Maltose-Forming α-Amylase Production by an Extreme Thermophile Geobacillus thermoleovorans: Whole Cell Immobilization. Applied Biochemistry and Biotechnology, 159: 464-477.
  • Sahnoun M, Kriaa M, Elgharbi F, Ayadi DZ, Bejar S, Kammoun R, 2015. Aspergillus oryzae S2 Alpha-Amylase Production Under Solid State Fermentation: Optimization of Culture Conditions. International Journal of Biological Macromolecules, 75: 73-80.
  • Salim AA, Grbavcic S, Sekuljica N, Sekulic MV, Jovanovic J, Tanaskovic SJ, Lukovic N, Knezevic-Jugovic Z, 2019. Enzyme Production by Solid-State Fermentation on Soybean Meal: A Comparative Study of Conventional and Ultrasound-Assisted Extraction Methods. Biotechnology and Applied Biochemistry, 66 (3): 361-368.
  • Saxena R, Singh R, 2011. Amylase Production by Solid-State Fermentation of Agro-Industrial Wastes Using Bacillus sp. Brazilian Journal of Microbiology, 42 (4): 1334-1342.
  • Sethi BK, Jana A, Nanda PK, Mohapatra PKD, Sahoo SL, Patra JK, 2016. Production of α-Amylase by Aspergillus terreus NCFT4269.10 Using Pearl Millet and Its Structural Characterization. Frontiers in Plant Science, 7 (ID: 639): 1-13.
  • Silva IF, Langbehn RK, Sılva RGC, Pantoja LDA, Vanzela APFC, Santos ASD, 2016. α-Amylase Production by Bacillus Amyloliquefaciens Utilizing Macauba Cake (Acrocomia aculeata) and Peach Palm Flour (Bactris gasipaes-Kunth) as Substrates. Biocatalysis and Biotransformation, 34 (2): 76-82.
  • Simair AA, Qureshi AS, Khushk, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C, 2017. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. BioMed Research International. 2017 (ID: 9173040): 1-9.
  • Steudler, S., Werner, A., Walther, T, 2019. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Advances in Biochemical Engineering Biotechnology, 169: 51-81.
  • Sülük K, Tosun İ, Ekinci K, 2018. Elma İşleme Atıklarının Özelliklerinin Belirlenmesi ve Bertaraf Yöntemlerinin İncelenmesi. Bilge International Journal of Science and Technology Research, 2 (Special Issue): 98-108.
  • Tiwari SP, Srivastava R, Singh CS, Shukla K, Singh RK, Singh P, Singh R, Singh NL, Sharma R, 2015. Amylases: An Overvıew with Special Reference to Alpha Amylase. Journal of Global Biosciences, 4 (1): 1886-1901.
  • Tripathi AD, Joshi A, Singh SP, Shrivastava A, 2017. Production of Amylase by Bacillus polymyxa NCIM No. 2539 from Agroindustrial Wastes. Applied Food Biotechnology, 4 (2): 103-112.
  • Unakal C, Kallur RI, Kaliwal BB, 2012. Production of Α-Amylase Using Banana Waste by Bacillus subtilis under Solid State Fermentation. European Journal of Experimental Biology, 2 (4): 1044-1052.
  • Uygut MA, Tanyildizi MŞ, 2018. Optimization of Alpha-Amylase Production by Bacillus amyloliquefaciens Grown on Orange Peels. Iranian Journal of Science and Technology, Transactions A: Science, 42, 443-449.
  • Vijayaraghavan P, Kalaiyarasi M, Vincent SGP, 2015. Cow Dung Is an Ideal Fermentation Medium for Amylase Production in Solid-State Fermentation by Bacillus cereus. Journal of Genetic Engineering and Biotechnology, 13: 111-117.
  • Zhao W, Zheng J, Wang YG, Zhou HB, 2011. A Marked Enhancement in Production of Amylase by Bacillus amyloliquefaciens in Flask Fermentation Using Statistical Methods. Journal of Central South University Technology, 18 (4): 1054-1062.

Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi

Yıl 2021, , 58 - 67, 01.03.2021
https://doi.org/10.21597/jist.780601

Öz

Biyokütlenin değerlendirilmesi, çevre kirliliğinin önlenmesi bağlamında büyük ilgi görmektedir. Tarımsal sanayi atıkları ve yan ürünleri çok miktarda meydana gelmekte ve çürümeye bırakıldıklarında çevre kirliliğine neden olmaktadırlar. Katı faz fermantasyon (KFF) teknolojisinde tarımsal sanayi atıklarının kullanımı antibiyotikler, pigmentler, aromalar, amilazlar, proteazlar, selülazlar ve lipazlar gibi endüstriyel açıdan önemli enzimlerin üretiminde çeşitli avantajlar sunmaktadır. α-Amilaz, nişastanın rastgele hidrolizini katalize eden bir enzimdir. Bu enzimler tekstil, kağıt, gıda, biyoyakıtlar, deterjanlar ve ilaç endüstrileri gibi çeşitli biyoteknolojik uygulamalarda kullanılır. Bu çalışmada, seçilen bakteri suşu, Bacillus licheniformis VO1, elma, kavun, muz ve portakal kabuklarının bulunduğu katı faz fermantasyon ortamlarına inoküle edildi ve test edilen katı substratlar arasında en yüksek α-amilaz üretimi elma kabuklarının bulunduğu ortamdan elde edildi. Fermantasyon süresi, fermantasyon sıcaklığı, başlangıç pH, inokülüm oranı, azot, karbon ve metal kaynaklarının etkisi ayrı ayrı incelendi. Maksimum α-amilaz üretimi 45 °C, pH 6.0 ve 48. saatte elde edildi. Elma kabuklarının bulunduğu fermantasyon ortamına eklenen çeşitli karbon ve azot kaynaklarının etkisi incelendiğinde, maksimum α-amilaz üretimi sırasıyla nişasta ve maya özütü bulunan ortamlardan elde edildi. Elde edilen sonuçlar göz önünde bulundurulduğunda, meyve işleme sanayinde meydana gelen elma kabuğu atıklarının katı faz fermantasyonunda (KFF) substrat olarak kullanımı ile Bacillus licheniformis VO1’den α-amilaz üretimi gelecekte çevresel iyileştirme süreçlerinde kullanılmak üzere potansiyel bir aday olarak düşünülebilir.

Kaynakça

  • Abdullah R, Naeem N, Aftab M, Kaleem A, Iqtedar M, Iftikhar T, Naz S, 2018. Enhanced Production of Alpha Amylase by Exploiting Novel Bacterial Co-Culture Technique Employing Solid State Fermentation. Iranian Journal of Science and Technology, Transactions A: Science, 42: 305-312.
  • Akatı MY, 2019. An Overview of Amylase Production by Solid State Fermantation (SSF) since 2010. Journal of Technical Sciences, 9 (1): 1-7.
  • Alghabpoor SS, Panosyan H, Popov Y, Trchounian, A, 2013. Production of Thermostable Alpha-Amylase by Bacillus sp. Iranian S2 using Solid State Fermentation. Electronic Journal of Natural Sciences, 20 (1): 47-50.
  • Ahmed NE, El-Shamy AR, Awad HM, 2020. Optimization and Immobilization of Amylase Produced by Aspergillus terreus using Pomegranate Peel Waste. Bulletin of the National Research Centre, 44 (109): 1-12.
  • Almanaa TN, Vijayaraghavan P, Alharbi NS, Kadaikunnan S, Khaled JM, Alyahya SA, 2020. Solid State Fermentation of Amylase Production from Bacillus subtilis D19 using Agro-Residues. Journal of King Saud University-Science, 32 (2): 1555-1561.
  • Bernfield P, 1955. Amylases, α and β. In, Methods in Enzymology, Vol. 1, pp. 149-158. Academic Press, New York, USA.
  • Dash BK, Rahman MM, Sarker PK, 2015. Molecular İdentification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. BioMed Research International, 2015 (ID: 859805): 1-9.
  • Elmansy EA, Asker MS, El-Kady EM, Hassanein SM, El-Beih FM, 2018. Production and Optimization of α-Amylase from Thermo-Halophilic Bacteria Isolated from Different Local Marine Environments. Bulletin of the National Research Centre, 42 (31): 1-9.
  • El-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa, AM, Ibrahim, I.H, Al-Talhi HA, 2014. Solid Fermentation of Wheat Bran for Hydrolytic Enzymes Production and Saccharification Content by a Local Isolate Bacillus megatherium. BMC Biotechnology, 14 (29): 1-8.
  • Far BE, Ahmadi Y, Khosroushahi AY, Dilmaghani A, 2020. Microbial Alpha-Amylase Production: Progress, Challenges and Perspectives. Advanced Pharmaceutical Bulletin, 10 (3): 350-358.
  • Issac R, Prince R, 2015. Production of Alpha-Amylase by Solid State Fermentation using Bacillus cereus MTCC 7524 and Bacillus licheniformis MTCC 7445 from Dairy Sludge-A Comparative Study. International Journal of Pharmtech Research, 8: 111-117.
  • Lal N, Jyoti J, Sachan P, 2017. Optimization of Carbon Sources for the Amylase Production and Growth of Bacillus licheniformis JAR-26 under Submerged Fermentation. Indian Journal of Experimental Biology, 4 (1): 31-36.
  • López-Gómez JP, Manan MA, Webb C, 2020. Solid-State Fermentation of Food İndustry Wastes: In Food Industry Wastes (Second Edition). Elsevier, pp, 135-161. London-United Kingdom.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein Measurement with the Folin-Phenol Reagents. Journal of Biology and Chemistry, 48: 17-25.
  • Maity S, Mallik S, Basuthakur R, Gupta S, 2015. Optimization of Solid State Fermentation Conditions and Characterization of Thermostable Alpha Amylase from Bacillus subtilis (ATCC 6633). Journal of Bioprocessing and Biotechniques, 5 (4): 1-7.
  • María AC, Ravanal C, Andrews BA, Asenjo JA, 2019. Heterologous Expression and Biochemical Characterization of a Novel Cold-Active α-Amylase from the Antarctic Bacteria Pseudoalteromonas sp. 2-3. Protein Expression and Purification, 155: 78-85.
  • Melnichuk N, Braia MJ, Anselmi PA, Meini MR, Romanini D, 2020. Valorization of Two Agroindustrial Wastes to Produce Alpha-Amylase Enzyme from Aspergillus Oryzae by Solid State Fermentation. Waste Management, 106: 155-161.
  • Mitchell DA, Berovic M, Krieger N, 2006. Introduction to Solid-State Fermentation Bioreactors. In: Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation, Springer-Verlag, Berlin, Heidelberg, pp 33-45.
  • Msarah MJ, Ibrahim I, Hamid AA, Aqma WS, 2020. Optimisation and Production of Alpha Amylase from Thermophilic Bacillus spp. and İts Application in Food Waste Biodegradation. Heliyon, 6 (6): 1-9.
  • Mukherjee AK, Borah M, Rai SK, 2009. To Study The Influence of Different Components of Fermentable Substrates on Induction of Extracellular α-Amylase Synthesis by Bacillus subtilis DM-03 in Solid-State Fermentation and Exploration of Feasibility for Inclusion of α-Amylase in Laundry Detergent. Biochemical Engineering Journal, 43 (2): 149-156.
  • Nusrat A, Rahman SR, 2007. Comparative Studies on the Production of Extracellular α-Amylase by Three Mesophilic Bacillus Isolates. Bangladesh Journal of Microbiology, 24 (2): 129-132.
  • Nwagu TN, Okolo BN, 2011. Extracellular Amylase Production of a Thermotolerant Fusarium sp. Isolated from Eastern Nigerian Soil. Brazilian Archives of Biology and Technology, 54 (4): 649-658.
  • Oliva RV Uribe JAG, 2020. Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. Sustainability, 495: 1-12.
  • Pranay K, Padmadeo S.R., Prasad B, 2019. Production of Amylase from Bacillus subtilis sp. Strain KR1 Under Solid State Fermentation on Different Agrowastes. Biocatalysis and Agricultural Biotechnology 21 (ID: 101300): 1-8.
  • Raul D, Biswas T, Mukhopadhyay S, Das SK, Gupta S, 2014. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. Biochemistry Research International, 2014 (ID: 568141): 1-5.
  • Rao UMJL, Satyanarayana T, 2009. Hyperthermostable, Ca2+ Independent, and High Maltose-Forming α-Amylase Production by an Extreme Thermophile Geobacillus thermoleovorans: Whole Cell Immobilization. Applied Biochemistry and Biotechnology, 159: 464-477.
  • Sahnoun M, Kriaa M, Elgharbi F, Ayadi DZ, Bejar S, Kammoun R, 2015. Aspergillus oryzae S2 Alpha-Amylase Production Under Solid State Fermentation: Optimization of Culture Conditions. International Journal of Biological Macromolecules, 75: 73-80.
  • Salim AA, Grbavcic S, Sekuljica N, Sekulic MV, Jovanovic J, Tanaskovic SJ, Lukovic N, Knezevic-Jugovic Z, 2019. Enzyme Production by Solid-State Fermentation on Soybean Meal: A Comparative Study of Conventional and Ultrasound-Assisted Extraction Methods. Biotechnology and Applied Biochemistry, 66 (3): 361-368.
  • Saxena R, Singh R, 2011. Amylase Production by Solid-State Fermentation of Agro-Industrial Wastes Using Bacillus sp. Brazilian Journal of Microbiology, 42 (4): 1334-1342.
  • Sethi BK, Jana A, Nanda PK, Mohapatra PKD, Sahoo SL, Patra JK, 2016. Production of α-Amylase by Aspergillus terreus NCFT4269.10 Using Pearl Millet and Its Structural Characterization. Frontiers in Plant Science, 7 (ID: 639): 1-13.
  • Silva IF, Langbehn RK, Sılva RGC, Pantoja LDA, Vanzela APFC, Santos ASD, 2016. α-Amylase Production by Bacillus Amyloliquefaciens Utilizing Macauba Cake (Acrocomia aculeata) and Peach Palm Flour (Bactris gasipaes-Kunth) as Substrates. Biocatalysis and Biotransformation, 34 (2): 76-82.
  • Simair AA, Qureshi AS, Khushk, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C, 2017. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. BioMed Research International. 2017 (ID: 9173040): 1-9.
  • Steudler, S., Werner, A., Walther, T, 2019. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Advances in Biochemical Engineering Biotechnology, 169: 51-81.
  • Sülük K, Tosun İ, Ekinci K, 2018. Elma İşleme Atıklarının Özelliklerinin Belirlenmesi ve Bertaraf Yöntemlerinin İncelenmesi. Bilge International Journal of Science and Technology Research, 2 (Special Issue): 98-108.
  • Tiwari SP, Srivastava R, Singh CS, Shukla K, Singh RK, Singh P, Singh R, Singh NL, Sharma R, 2015. Amylases: An Overvıew with Special Reference to Alpha Amylase. Journal of Global Biosciences, 4 (1): 1886-1901.
  • Tripathi AD, Joshi A, Singh SP, Shrivastava A, 2017. Production of Amylase by Bacillus polymyxa NCIM No. 2539 from Agroindustrial Wastes. Applied Food Biotechnology, 4 (2): 103-112.
  • Unakal C, Kallur RI, Kaliwal BB, 2012. Production of Α-Amylase Using Banana Waste by Bacillus subtilis under Solid State Fermentation. European Journal of Experimental Biology, 2 (4): 1044-1052.
  • Uygut MA, Tanyildizi MŞ, 2018. Optimization of Alpha-Amylase Production by Bacillus amyloliquefaciens Grown on Orange Peels. Iranian Journal of Science and Technology, Transactions A: Science, 42, 443-449.
  • Vijayaraghavan P, Kalaiyarasi M, Vincent SGP, 2015. Cow Dung Is an Ideal Fermentation Medium for Amylase Production in Solid-State Fermentation by Bacillus cereus. Journal of Genetic Engineering and Biotechnology, 13: 111-117.
  • Zhao W, Zheng J, Wang YG, Zhou HB, 2011. A Marked Enhancement in Production of Amylase by Bacillus amyloliquefaciens in Flask Fermentation Using Statistical Methods. Journal of Central South University Technology, 18 (4): 1054-1062.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Biyoloji / Biology
Yazarlar

Nurullah Akcan 0000-0003-3960-9553

Yayımlanma Tarihi 1 Mart 2021
Gönderilme Tarihi 14 Ağustos 2020
Kabul Tarihi 28 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akcan, N. (2021). Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi. Journal of the Institute of Science and Technology, 11(1), 58-67. https://doi.org/10.21597/jist.780601
AMA Akcan N. Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2021;11(1):58-67. doi:10.21597/jist.780601
Chicago Akcan, Nurullah. “Bacillus Licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların Ve Fiziksel Faktörlerin İncelenmesi”. Journal of the Institute of Science and Technology 11, sy. 1 (Mart 2021): 58-67. https://doi.org/10.21597/jist.780601.
EndNote Akcan N (01 Mart 2021) Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi. Journal of the Institute of Science and Technology 11 1 58–67.
IEEE N. Akcan, “Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 1, ss. 58–67, 2021, doi: 10.21597/jist.780601.
ISNAD Akcan, Nurullah. “Bacillus Licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların Ve Fiziksel Faktörlerin İncelenmesi”. Journal of the Institute of Science and Technology 11/1 (Mart 2021), 58-67. https://doi.org/10.21597/jist.780601.
JAMA Akcan N. Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:58–67.
MLA Akcan, Nurullah. “Bacillus Licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların Ve Fiziksel Faktörlerin İncelenmesi”. Journal of the Institute of Science and Technology, c. 11, sy. 1, 2021, ss. 58-67, doi:10.21597/jist.780601.
Vancouver Akcan N. Bacillus licheniformis VO1’den α-Amilaz Üretimi için Tarımsal Endüstriyel Atıkların ve Fiziksel Faktörlerin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(1):58-67.