Araştırma Makalesi
BibTex RIS Kaynak Göster

Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi

Yıl 2021, , 3138 - 3151, 15.12.2021
https://doi.org/10.21597/jist.793772

Öz

Gümüş nanoparçacıklarının (AgNPs) bakteriler aracılığıyla ekstraselüler sentezi çevre dostu ve ekonomik bir yaklaşım olması nedeniyle oldukça popüler hale gelmiştir. Sunulan bu çalışmada AgNP’ler Kribbella turkmenica 16K104’ün kültür sıvısı kullanılarak sentezlenmiştir. Fiziko-kimyasal koşulların ve kültür ortamı bileşenlerinin AgNP’lerin sentezi üzerine etkileri araştırılarak optimizasyon çalışmaları gerçekleştirilmiştir. Optimum koşullar altında sentezlenen AgNP’ler karakterize edilmiştir. Taramalı Elektron Mikroskobu (SEM) analizi ile sentezlenen parçacıkların küresel şekilde oldukları belirlenmiştir. Dinamik Işık Saçılımı (DLS) analizi ile AgNP’lerin 4-20 nm boyutları arasında homojen dağılım gösterdikleri görülmüş, ortalama parçacık boyutunun 6 nm ve zeta potansiyelinin ise -30.6 ± 10.1 olduğu tespit edilmiştir. Sentezlenen AgNP’lerin patojen bakteriyel suşlar karşısında önemli düzeyde inhibe edici ve bakteriyosidal etki gösterdiği belirlenmiştir. Bununla birlikte, AgNP’lerin Hep G2 hücreleri üzerindeki genotoksik potansiyeli değerlendirilmiş ve 24 saatlik maruziyette AgNP’lerin 16 µg mL-1’ye kadar önemli bir genotoksik etkisi gözlemlenmemiştir. Sunulan bu çalışma ile farmasötik, gıda, tekstil ve polimer endüstrileri için uygun fiziksel ve biyolojik özelliklere sahip AgNP’lerin Kribbella taksonunda bir bakteri türü aracılığıyla sentezi literatüre kazandırılmıştır.

Destekleyen Kurum

Ondokuz Mayıs Üniversitesi BAP Birimi

Kaynakça

  • Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM, 2016. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles From Marine Streptomyces rochei MHM13. The Egyptian Journal of Aquatic Research, 42(3): 301-312.
  • Abdollahnia M, Makhdoumi A, Mashreghi M, Eshghi H, 2020. Exploring the potentials of Halophilic Prokaryotes From a Solar Saltern for Synthesizing Nanoparticles: The Case of Silver and Selenium. Plos One, 15(3): e0229886.
  • Adiguzel AO, Adiguzel SK, Mazmanci B, Tunçer M, Mazmanci MA, 2018. Silver Nanoparticle Biosynthesis from Newly Isolated Streptomyces Genus From Soil. Materials Research Express, 5(4): 045402.
  • Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC, 2019. Biological Synthesis of Metallic Nanoparticles (MNPs) by Plants and Microbes: Their Cellular Uptake, Biocompatibility, and Biomedical Applications. Applied Microbiology and Biotechnology, 103(7): 2913-2935.
  • Altinsoy BD, Karatoprak GŞ, Ocsoy I, 2019. Extracellular Directed Ag NPs Formation and İnvestigation of Their Antimicrobial and Cytotoxic Properties. Saudi Pharmaceutical Journal, 27(1): 9-16.
  • Anasane N, Golińska P, Wypij M, Rathod D, Dahm H, Rai M, 2016. Acidophilic Actinobacteria Synthesised Silver Nanoparticles Showed Remarkable Activity Against Fungi‐Causing Superficial Mycoses in Humans. Mycoses, 59(3): 157-166.
  • Anteneh YS, Franco CMM, 2019. Whole Cell Actinobacteria as Biocatalysts. Frontiers in Microbiology, 10: 77.
  • Ashraf N, Ahmad F, Jing Jie C, Tuo Di Z, Feng-Zhu Z, Yin, DC, 2019. Optimization of Enterobacter cloacae Mediated Synthesis of Extracellular Silver Nanoparticles by Response Surface Methodology and Their Characterization. Particulate Science and Technology, 1-13.
  • Bahrami‐Teimoori B, Pourianfar HR, Akhlaghi M, Tanhaeian A, Rezayi M, 2019. Biosynthesis and Antibiotic Activity of Silver Nanoparticles Using Different Sources: Glass Industrial Sewage‐Adapted Bacillus sp. and Herbaceous Amaranthus sp. Biotechnology and Applied Biochemistry, 66(5): 900-910.
  • Budama-Kılınç Y, 2019. Klorojenik Asit Yüklü PLGA Nanopartiküllerinin Üretimi ve Antimikrobiyal Etkinliğinin Belirlenmesi. Türk Mikrobiyoloji Cemiyeti Dergisi, 49(1): 47-54.
  • Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H, 2018. Antimicrobial Activity of Biosilver Nanoparticles Produced by a Novel Streptacidiphilus durhamensis Strain. Journal of Microbiology, Immunology and Infection, 51(1): 45-54.
  • Das M, Smita SS 2018. Biosynthesis of Silver Nanoparticles Using Bark Extracts of Butea monosperma (Lam.) Taub. and Study of Their Antimicrobial Activity. Applied Nanoscience, 8(5): 1059-1067.
  • de Souza TAJ, Souza LRR, Franchi LP, 2019. Silver Nanoparticles: An Integrated View of Green Synthesis Methods, Transformation in the Environment, and Toxicity. Ecotoxicology and Environmental Safety, 171: 691-700.
  • Dhanaraj S, Thirunavukkarasu S, John HA, Pandian S, Salmen SH, Chinnathambi A, Alharbi SA, 2020. Novel Marine Nocardiopsis dassonvillei-DS013 Mediated Silver Nanoparticles Characterization and its Bactericidal Potential Against Clinical Isolates. Saudi Journal of Biological Sciences, 27: 991-995.
  • El-Naggar NEA, Abdelwahed N A, 2014. Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces viridochromogenes. Journal of Microbiology, 52(1): 53-63.
  • Golińska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M, 2016. Synthesis of Silver Nanoparticles From Two Acidophilic Strains of Pilimelia columellifera subsp. pallida and Their Antibacterial Activities. Journal of Basic Microbiology, 56(5): 541-556.
  • Göl F, Aygün A, Seyrankaya A, Gür T, Yenikaya C, Şen F, 2020. Green Synthesis and Characterization of Camellia sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications. Materials Chemistry and Physics, 123037.
  • Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H, 2019. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158: 8-14.
  • Hussain I, Singh NB, Singh A, Singh H, Singh SC, 2016. Green Synthesis of Nanoparticles and its Potential Application. Biotechnology Letters, 38(4): 545-560.
  • Iqtedar M, Aslam M, Akhyar M, Shehzaad A, Abdullah R, Kaleem A, 2019. Extracellular Biosynthesis, Characterization, Optimization of Silver Nanoparticles (AgNPs) Using Bacillus mojavensis BTCB15 and its Antimicrobial Activity Against Multidrug Resistant Pathogens. Preparative Biochemistry and Biotechnology, 49(2): 136-142.
  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC, 2016. Pseudomonas deceptionensis DC5-Mediated Synthesis of Extracellular Silver Nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(6): 1576-1581.
  • Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KB, 2014. Streptomyces sp. LK3 Mediated Synthesis of Silver Nanoparticles and Its Biomedical Application. Bioprocess and Biosystems Engineering, 37(2): 261-267.
  • Katsuyama Y, 2019. Mining Novel Biosynthetic Machineries of Secondary Metabolites From Actinobacteria. Bioscience, Biotechnology, and Biochemistry, 83(9): 1606-1615.
  • Khan AU, Malik N, Khan M, Cho MH, Khan MM, 2018. Fungi-Assisted Silver Nanoparticle Synthesis and Their Applications. Bioprocess and Biosystems Engineering, 41(1): 1-20.
  • Kumar PS, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Al-Dhabi NA, 2015. Extracellular biosynthesis of Silver Nanoparticle Using Streptomyces sp. 09 PBT 005 and its Antibacterial and Cytotoxic Properties. Applied Nanoscience, 5(2): 169-180.
  • Manikprabhu D, Cheng J, Chen W, Sunkara AK, Mane SB, Kumar R, das M, Hozzein WN, Duan YQ, Li WJ, 2016. Sunlight Mediated Synthesis of Silver Nanoparticles by a Novel Actinobacterium (Sinomonas mesophila MPKL 26) and its Antimicrobial Activity Against Multi Drug Resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 158: 202-205.
  • Mohanta YK, Behera SK, 2014. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11): 2263-2269.
  • Mohanta YK, Behera, SK, 2014. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11): 2263-2269.
  • Narayanan KB, Sakthivel N, 2010. Biological Synthesis of Metal Nanoparticles by Microbes. Advances in Colloid and Interface Science, 156(1-2): 1-13.
  • Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH, 2012. Green Biosynthesis of Silver Nanoparticles From an Actinobacteria Rhodococcus sp. Materials Letters, 72: 92-94.
  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A, 2013. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated From Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia. PloS One, 8(3).
  • Rafique M, Sadaf I, Rafique MS, Tahir MB, 2017. A review on Green Synthesis of Silver Nanoparticles and Their Applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7): 1272-1291.
  • Railean‐Plugaru V, Pomastowski P, Wypij M, Szultka‐Mlynska M, Rafinska K, Golinska P, Dahm H, Buszewski B, 2016. Study of Silver Nanoparticles Synthesized by Acidophilic Strain of Actinobacteria Isolated From the of Picea sitchensis Forest Soil. Journal of Applied Microbiology, 120(5): 1250-1263.
  • Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK, 2019. Biosynthesis of Silver Nanoparticle Using Extract of Zea mays (Corn Flour) and Investigation of Its Cytotoxicity Effect and Radical Scavenging Potential. Journal of Photochemistry and Photobiology B: Biology, 193: 1-7.
  • Rathod D, Golinska P, Wypij M, Dahm H, Rai M, 2016. A new report of Nocardiopsis valliformis Strain OT1 From Alkaline Lonar Crater of India and its Use in Synthesis of Silver Nanoparticles With Special Reference to Evaluation of Antibacterial Activity and Cytotoxicity. Medical Microbiology and İmmunology, 205(5): 435-447.
  • Samundeeswari A, Dhas SP, Nirmala J, John SP, Mukherjee A, Chandrasekaran N, 2012. Biosynthesis of Silver Nanoparticles Using Actinobacterium Streptomyces albogriseolus and Its Antibacterial Activity. Biotechnology and Applied Biochemistry, 59(6): 503-507.
  • Sanjenbam P, Gopal J V, Kannabiran K, 2014. Anticandidal Activity of Silver Nanoparticles Synthesized Using Streptomyces sp. VITPK1. Journal De Mycologie Médicale, 24(3): 211-219.
  • Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS, 2018. A Comprehensive Review on Green Nanomaterials Using Biological Systems: Recent Perception and Their Future Applications. Colloids and Surfaces B: Biointerfaces, 170: 20-35.
  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A, 2018. Synthesis of Silver Nanoparticles From Bacillus brevis (NCIM 2533) and Their Antibacterial Activity Against Pathogenic Bacteria. Microbial Pathogenesis, 116: 221-226.
  • Saygin H, Ay H, Guven K, Sahin N, 2019. Kribbella turkmenica sp. nov., Isolated From the Karakum Desert. International Journal of Systematic and Evolutionary Microbiology, 69(8): 2533-2540.
  • Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S, 2019. Green Synthesis of Silver Nanoparticles from Medicinal Plants and Evaluation of Their Antiviral Potential Against Chikungunya Virus. Applied Microbiology and Biotechnology, 103(2): 881-891.
  • Singh H, Du J, Singh P, Yi TH, 2018. Extracellular Synthesis of Silver Nanoparticles by Pseudomonas sp. THG-LS1. 4 and Their Antimicrobial Application. Journal of Pharmaceutical Analysis, 8(4): 258-264.
  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC, 2016. Extracellular Synthesis of Silver and Gold Nanoparticles by Sporosarcina koreensis DC4 and Their Biological Applications. Enzyme and Microbial Technology, 86: 75-83.
  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA, 2015. Bacteriagenic Silver Nanoparticles: Synthesis, Mechanism, and Applications. Applied Microbiology and Biotechnology, 99(11): 4579-4593.
  • Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M, 2016. Evaluation of Cytotoxicity, Immune Compatibility and Antibacterial Activity of Biogenic Silver Nanoparticles. Medical Microbiology and Immunology, 205(6): 603-613.
  • Taha ZK, Hawar SN, Sulaiman GM, 2019. Extracellular Biosynthesis of Silver Nanoparticles from Penicillium italicum and its Antioxidant, Antimicrobial and Cytotoxicity Activities. Biotechnology Letters, 41(8-9): 899-914.
  • Vijayabharathi R, Sathya A, Gopalakrishnan S, 2018. Extracellular Biosynthesis of Silver Nanoparticles Using Streptomyces griseoplanus SAI-25 and its Antifungal Activity Against Macrophomina phaseolina, the Charcoal Rot Pathogen of Sorghum. Biocatalysis and Agricultural Biotechnology, 14: 166-171.
  • Vinoth S, Shankar SG, Gurusaravanan P, Janani B, Devi JK, 2019. Anti-larvicidal activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors. Journal of Cluster Science, 30(1): 171-180.
  • Wypij M, Świecimska M, Czarnecka J, Dahm H, Rai M, Golinska, P. 2018. Antimicrobial and Cytotoxic Activity of Silver Nanoparticles Synthesized from two Haloalkaliphilic Actinobacterial Strains Alone and in Combination With Antibiotics. Journal of Applied Microbiology, 124(6): 1411-1424.
  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M, 2018. Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6): 817-835.

Synthesis of Silver Nanoparticles by Kribbella turkmenica 16K104, Their Characterization, Antimicrobial Properties and Genotoxic Potential

Yıl 2021, , 3138 - 3151, 15.12.2021
https://doi.org/10.21597/jist.793772

Öz

Extracellular synthesis of silver nanoparticles (AgNPs) by bacteria has become very popular due to its environmentally friendly and economical approach. In the present study, AgNPs were synthesized culture liquid of Kribbella turkmenica 16K104. Effects of physico-chemical conditions and components of culture medium on synthesis of AgNPs were investigated and then synthesis was optimized. AgNPs synthesized under optimum condition were characterized. Scanning Electron Microscopy (SEM) analysis showed that the particles were spherical in shape. Dynamic Light Scattering (DLS) analysis Indicated that AgNPs were 4-20 nm in size and showed homogeneous distribution. Average particle size and zeta potential of AgNPs was detected to be 6 nm and -30.6 ± 10.1, respectively. It was determined that the AgNPs exhibited inhibitory and cidal activity against significant bacterial strains. In addition, genotoxic potential of the AgNPs on Hep G2 cells was assessed. Significant genotoxic effect did not observe after exposure with 0-16 µg mL-1 of AgNPs for 24 h. As a result, this is the first report on the extracellular synthesis of AgNPs with usage potential in pharmaceutical, food, textile and polymer industries using a Kribbella species.

Kaynakça

  • Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM, 2016. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles From Marine Streptomyces rochei MHM13. The Egyptian Journal of Aquatic Research, 42(3): 301-312.
  • Abdollahnia M, Makhdoumi A, Mashreghi M, Eshghi H, 2020. Exploring the potentials of Halophilic Prokaryotes From a Solar Saltern for Synthesizing Nanoparticles: The Case of Silver and Selenium. Plos One, 15(3): e0229886.
  • Adiguzel AO, Adiguzel SK, Mazmanci B, Tunçer M, Mazmanci MA, 2018. Silver Nanoparticle Biosynthesis from Newly Isolated Streptomyces Genus From Soil. Materials Research Express, 5(4): 045402.
  • Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC, 2019. Biological Synthesis of Metallic Nanoparticles (MNPs) by Plants and Microbes: Their Cellular Uptake, Biocompatibility, and Biomedical Applications. Applied Microbiology and Biotechnology, 103(7): 2913-2935.
  • Altinsoy BD, Karatoprak GŞ, Ocsoy I, 2019. Extracellular Directed Ag NPs Formation and İnvestigation of Their Antimicrobial and Cytotoxic Properties. Saudi Pharmaceutical Journal, 27(1): 9-16.
  • Anasane N, Golińska P, Wypij M, Rathod D, Dahm H, Rai M, 2016. Acidophilic Actinobacteria Synthesised Silver Nanoparticles Showed Remarkable Activity Against Fungi‐Causing Superficial Mycoses in Humans. Mycoses, 59(3): 157-166.
  • Anteneh YS, Franco CMM, 2019. Whole Cell Actinobacteria as Biocatalysts. Frontiers in Microbiology, 10: 77.
  • Ashraf N, Ahmad F, Jing Jie C, Tuo Di Z, Feng-Zhu Z, Yin, DC, 2019. Optimization of Enterobacter cloacae Mediated Synthesis of Extracellular Silver Nanoparticles by Response Surface Methodology and Their Characterization. Particulate Science and Technology, 1-13.
  • Bahrami‐Teimoori B, Pourianfar HR, Akhlaghi M, Tanhaeian A, Rezayi M, 2019. Biosynthesis and Antibiotic Activity of Silver Nanoparticles Using Different Sources: Glass Industrial Sewage‐Adapted Bacillus sp. and Herbaceous Amaranthus sp. Biotechnology and Applied Biochemistry, 66(5): 900-910.
  • Budama-Kılınç Y, 2019. Klorojenik Asit Yüklü PLGA Nanopartiküllerinin Üretimi ve Antimikrobiyal Etkinliğinin Belirlenmesi. Türk Mikrobiyoloji Cemiyeti Dergisi, 49(1): 47-54.
  • Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H, 2018. Antimicrobial Activity of Biosilver Nanoparticles Produced by a Novel Streptacidiphilus durhamensis Strain. Journal of Microbiology, Immunology and Infection, 51(1): 45-54.
  • Das M, Smita SS 2018. Biosynthesis of Silver Nanoparticles Using Bark Extracts of Butea monosperma (Lam.) Taub. and Study of Their Antimicrobial Activity. Applied Nanoscience, 8(5): 1059-1067.
  • de Souza TAJ, Souza LRR, Franchi LP, 2019. Silver Nanoparticles: An Integrated View of Green Synthesis Methods, Transformation in the Environment, and Toxicity. Ecotoxicology and Environmental Safety, 171: 691-700.
  • Dhanaraj S, Thirunavukkarasu S, John HA, Pandian S, Salmen SH, Chinnathambi A, Alharbi SA, 2020. Novel Marine Nocardiopsis dassonvillei-DS013 Mediated Silver Nanoparticles Characterization and its Bactericidal Potential Against Clinical Isolates. Saudi Journal of Biological Sciences, 27: 991-995.
  • El-Naggar NEA, Abdelwahed N A, 2014. Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces viridochromogenes. Journal of Microbiology, 52(1): 53-63.
  • Golińska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M, 2016. Synthesis of Silver Nanoparticles From Two Acidophilic Strains of Pilimelia columellifera subsp. pallida and Their Antibacterial Activities. Journal of Basic Microbiology, 56(5): 541-556.
  • Göl F, Aygün A, Seyrankaya A, Gür T, Yenikaya C, Şen F, 2020. Green Synthesis and Characterization of Camellia sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications. Materials Chemistry and Physics, 123037.
  • Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H, 2019. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158: 8-14.
  • Hussain I, Singh NB, Singh A, Singh H, Singh SC, 2016. Green Synthesis of Nanoparticles and its Potential Application. Biotechnology Letters, 38(4): 545-560.
  • Iqtedar M, Aslam M, Akhyar M, Shehzaad A, Abdullah R, Kaleem A, 2019. Extracellular Biosynthesis, Characterization, Optimization of Silver Nanoparticles (AgNPs) Using Bacillus mojavensis BTCB15 and its Antimicrobial Activity Against Multidrug Resistant Pathogens. Preparative Biochemistry and Biotechnology, 49(2): 136-142.
  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC, 2016. Pseudomonas deceptionensis DC5-Mediated Synthesis of Extracellular Silver Nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(6): 1576-1581.
  • Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KB, 2014. Streptomyces sp. LK3 Mediated Synthesis of Silver Nanoparticles and Its Biomedical Application. Bioprocess and Biosystems Engineering, 37(2): 261-267.
  • Katsuyama Y, 2019. Mining Novel Biosynthetic Machineries of Secondary Metabolites From Actinobacteria. Bioscience, Biotechnology, and Biochemistry, 83(9): 1606-1615.
  • Khan AU, Malik N, Khan M, Cho MH, Khan MM, 2018. Fungi-Assisted Silver Nanoparticle Synthesis and Their Applications. Bioprocess and Biosystems Engineering, 41(1): 1-20.
  • Kumar PS, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Al-Dhabi NA, 2015. Extracellular biosynthesis of Silver Nanoparticle Using Streptomyces sp. 09 PBT 005 and its Antibacterial and Cytotoxic Properties. Applied Nanoscience, 5(2): 169-180.
  • Manikprabhu D, Cheng J, Chen W, Sunkara AK, Mane SB, Kumar R, das M, Hozzein WN, Duan YQ, Li WJ, 2016. Sunlight Mediated Synthesis of Silver Nanoparticles by a Novel Actinobacterium (Sinomonas mesophila MPKL 26) and its Antimicrobial Activity Against Multi Drug Resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 158: 202-205.
  • Mohanta YK, Behera SK, 2014. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11): 2263-2269.
  • Mohanta YK, Behera, SK, 2014. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11): 2263-2269.
  • Narayanan KB, Sakthivel N, 2010. Biological Synthesis of Metal Nanoparticles by Microbes. Advances in Colloid and Interface Science, 156(1-2): 1-13.
  • Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH, 2012. Green Biosynthesis of Silver Nanoparticles From an Actinobacteria Rhodococcus sp. Materials Letters, 72: 92-94.
  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A, 2013. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated From Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia. PloS One, 8(3).
  • Rafique M, Sadaf I, Rafique MS, Tahir MB, 2017. A review on Green Synthesis of Silver Nanoparticles and Their Applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7): 1272-1291.
  • Railean‐Plugaru V, Pomastowski P, Wypij M, Szultka‐Mlynska M, Rafinska K, Golinska P, Dahm H, Buszewski B, 2016. Study of Silver Nanoparticles Synthesized by Acidophilic Strain of Actinobacteria Isolated From the of Picea sitchensis Forest Soil. Journal of Applied Microbiology, 120(5): 1250-1263.
  • Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK, 2019. Biosynthesis of Silver Nanoparticle Using Extract of Zea mays (Corn Flour) and Investigation of Its Cytotoxicity Effect and Radical Scavenging Potential. Journal of Photochemistry and Photobiology B: Biology, 193: 1-7.
  • Rathod D, Golinska P, Wypij M, Dahm H, Rai M, 2016. A new report of Nocardiopsis valliformis Strain OT1 From Alkaline Lonar Crater of India and its Use in Synthesis of Silver Nanoparticles With Special Reference to Evaluation of Antibacterial Activity and Cytotoxicity. Medical Microbiology and İmmunology, 205(5): 435-447.
  • Samundeeswari A, Dhas SP, Nirmala J, John SP, Mukherjee A, Chandrasekaran N, 2012. Biosynthesis of Silver Nanoparticles Using Actinobacterium Streptomyces albogriseolus and Its Antibacterial Activity. Biotechnology and Applied Biochemistry, 59(6): 503-507.
  • Sanjenbam P, Gopal J V, Kannabiran K, 2014. Anticandidal Activity of Silver Nanoparticles Synthesized Using Streptomyces sp. VITPK1. Journal De Mycologie Médicale, 24(3): 211-219.
  • Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS, 2018. A Comprehensive Review on Green Nanomaterials Using Biological Systems: Recent Perception and Their Future Applications. Colloids and Surfaces B: Biointerfaces, 170: 20-35.
  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A, 2018. Synthesis of Silver Nanoparticles From Bacillus brevis (NCIM 2533) and Their Antibacterial Activity Against Pathogenic Bacteria. Microbial Pathogenesis, 116: 221-226.
  • Saygin H, Ay H, Guven K, Sahin N, 2019. Kribbella turkmenica sp. nov., Isolated From the Karakum Desert. International Journal of Systematic and Evolutionary Microbiology, 69(8): 2533-2540.
  • Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S, 2019. Green Synthesis of Silver Nanoparticles from Medicinal Plants and Evaluation of Their Antiviral Potential Against Chikungunya Virus. Applied Microbiology and Biotechnology, 103(2): 881-891.
  • Singh H, Du J, Singh P, Yi TH, 2018. Extracellular Synthesis of Silver Nanoparticles by Pseudomonas sp. THG-LS1. 4 and Their Antimicrobial Application. Journal of Pharmaceutical Analysis, 8(4): 258-264.
  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC, 2016. Extracellular Synthesis of Silver and Gold Nanoparticles by Sporosarcina koreensis DC4 and Their Biological Applications. Enzyme and Microbial Technology, 86: 75-83.
  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA, 2015. Bacteriagenic Silver Nanoparticles: Synthesis, Mechanism, and Applications. Applied Microbiology and Biotechnology, 99(11): 4579-4593.
  • Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M, 2016. Evaluation of Cytotoxicity, Immune Compatibility and Antibacterial Activity of Biogenic Silver Nanoparticles. Medical Microbiology and Immunology, 205(6): 603-613.
  • Taha ZK, Hawar SN, Sulaiman GM, 2019. Extracellular Biosynthesis of Silver Nanoparticles from Penicillium italicum and its Antioxidant, Antimicrobial and Cytotoxicity Activities. Biotechnology Letters, 41(8-9): 899-914.
  • Vijayabharathi R, Sathya A, Gopalakrishnan S, 2018. Extracellular Biosynthesis of Silver Nanoparticles Using Streptomyces griseoplanus SAI-25 and its Antifungal Activity Against Macrophomina phaseolina, the Charcoal Rot Pathogen of Sorghum. Biocatalysis and Agricultural Biotechnology, 14: 166-171.
  • Vinoth S, Shankar SG, Gurusaravanan P, Janani B, Devi JK, 2019. Anti-larvicidal activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors. Journal of Cluster Science, 30(1): 171-180.
  • Wypij M, Świecimska M, Czarnecka J, Dahm H, Rai M, Golinska, P. 2018. Antimicrobial and Cytotoxic Activity of Silver Nanoparticles Synthesized from two Haloalkaliphilic Actinobacterial Strains Alone and in Combination With Antibiotics. Journal of Applied Microbiology, 124(6): 1411-1424.
  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M, 2018. Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6): 817-835.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Yazarlar

Serpil Könen Adıgüzel Bu kişi benim 0000-0002-7959-3771

Ali Osman Adıgüzel 0000-0002-5602-5886

Tuğba Çelik Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 11 Eylül 2020
Kabul Tarihi 16 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Könen Adıgüzel, S., Adıgüzel, A. O., & Çelik, T. (2021). Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi. Journal of the Institute of Science and Technology, 11(4), 3138-3151. https://doi.org/10.21597/jist.793772
AMA Könen Adıgüzel S, Adıgüzel AO, Çelik T. Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):3138-3151. doi:10.21597/jist.793772
Chicago Könen Adıgüzel, Serpil, Ali Osman Adıgüzel, ve Tuğba Çelik. “Gümüş Nanoparçacıklarının Kribbella Turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi Ve Genotoksik Potansiyelinin Değerlendirilmesi”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 3138-51. https://doi.org/10.21597/jist.793772.
EndNote Könen Adıgüzel S, Adıgüzel AO, Çelik T (01 Aralık 2021) Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi. Journal of the Institute of Science and Technology 11 4 3138–3151.
IEEE S. Könen Adıgüzel, A. O. Adıgüzel, ve T. Çelik, “Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 3138–3151, 2021, doi: 10.21597/jist.793772.
ISNAD Könen Adıgüzel, Serpil vd. “Gümüş Nanoparçacıklarının Kribbella Turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi Ve Genotoksik Potansiyelinin Değerlendirilmesi”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 3138-3151. https://doi.org/10.21597/jist.793772.
JAMA Könen Adıgüzel S, Adıgüzel AO, Çelik T. Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:3138–3151.
MLA Könen Adıgüzel, Serpil vd. “Gümüş Nanoparçacıklarının Kribbella Turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi Ve Genotoksik Potansiyelinin Değerlendirilmesi”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 3138-51, doi:10.21597/jist.793772.
Vancouver Könen Adıgüzel S, Adıgüzel AO, Çelik T. Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):3138-51.