Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Using Unreinforced and Reinforced PLA in Production by Fused Deposition Modeling on Mechanical Properties

Yıl 2020, , 2800 - 2808, 15.12.2020
https://doi.org/10.21597/jist.799230

Öz

In recent years, the use of 3-dimensional (3D) printers working with the principles of fused deposition modeling (FDM) has become widespread in many areas. Thanks to this technology, even complex shaped parts, especially prototypes, can be produced in a short time and precisely, so it has become a must for research and development (R & D) studies in many sectors. With the FDM process, the use of polylactic acid (PLA) filaments, which are easy to dissolve in nature (biodegradable), has become important with the effect of environmental concerns. Therefore, it is important to make various reinforcements to PLA filaments to improve some of their properties and to expand their use. In this study, non-reinforced, 20% copper reinforced and 20% carbon fiber reinforced PLA composites were produced by 3D printer. The produced samples were subjected to tensile test and three point bending test and their mechanical properties were compared. It was observed that adding copper and carbon fiber reinforcements to PLA material reduces the tensile and bending strengths.

Kaynakça

  • Arpan MFZIM, Hoong LJ, 2019. Effect of Printing Temperature on Mechanical Properties of Copper Metal Polylactide Acid. AIP Conference Proceedings, 2137:1.
  • ASTM, 2014. D 638. Standard test method for tensile properties of plastics. American Society for Testing and Materials Standard.
  • Ayatollahi MR, Nabavi-Kivi A, Bahrami B, Yahya MY, Khosravani MR, 2020. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics, 237:107225.
  • BS EN ISO 178,2003.Plastics determination of flexural properties. British Standard.
  • Dobrescu T, Pascu NE, Jiga G, Simion I, Adır V, Enciu G, Tudose DI, 2019. Tensile Behavior of PLA and PLA Composite Materials Under Different Printing Parameters. Materiale Plastice, 56 (4):783.
  • Ferreira RTL, Amatte IC, Dutra TA, Bürger D, 2017. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B, 124:88-100.
  • Gomez-Gras G, Jerez-Mesa R, Travieso-Rodriguez JA, Lluma-Fuentes J, 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials and Design, 140:278-285.
  • Hinchcliffe SA, Hess KM, Srubar III WV, 2016. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Composites Part B, 95:346-354.
  • Kaya MF, Kayataş Demir N, Hüner B, Özcan RU, 2019. Effect of copper coating on the physical and electrochemical properties of conductive pla filament. Internatıonal Journal Of 3d Printing Technologies And Digital Industry, 3:2:128-136.
  • Liu Z, Lei Q, Xing S, 2019. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. Journal of Materials Research and Technology, 8(5):3741-3751.
  • Sağbaş B, 2018. Surface texture characterization and parameter optimization of fused deposition modelling process. Düzce University Journal of Science & Technology, 6: 1028-1037.
  • Sood AK, Equbal A, Toppo V, Ohdar RK, Mahapatra SS, 2012. An investigation on sliding wear of FDM built parts. CIRP Journal of Manufacturing Science and Technology, 5:48–54.
  • Valerga AP, Batista M, Salguero J, Girot F, 2018. Influence of PLA filament conditions on characteristics of FDM parts. Materials, 11:1322.
  • Zhang X, Chen L, Mulholland T, Osswald TA, 2019. Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling. SN Applied Sciences, 1:616.

Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması

Yıl 2020, , 2800 - 2808, 15.12.2020
https://doi.org/10.21597/jist.799230

Öz

Son yıllarda eriyik yığma modellemesi (EYM) ilkeleriyle çalışan 3 boyutlu (3B) yazıcıların kullanımı birçok alanda yaygınlaşmıştır. Bu teknoloji sayesinde başta prototipler olmak üzere karmaşık şekilli parçalar dahi kısa sürede ve hassas şekilde üretilebildiğinden çoğu sektörde araştırma geliştirme (AR-GE) çalışmalarının olmazsa olmazı haline gelmiştir. EYM işlemiyle birlikte çevresel kaygıların da etkisiyle doğada çözünümü kolay olan (biyobozunur) polilaktik asit (PLA) filamentlerin kullanımı önemli hale gelmiştir. Bundan dolayı PLA filamentlere çeşitli takviyeler yapılarak bazı özelliklerinin geliştirilmesi ve kullanımının yaygınlaştırılması önem arz etmektedir. Bu çalışmada da takviyesiz, %20 bakır takviyeli ve %20 karbon-fiber takviyeli PLA kompozitler 3B yazıcı ile üretilmiştir. Üretilen numuneler çekme testine ve üç nokta eğilme testine tabi tutularak mekanik özellikleri kıyaslanmıştır. PLA malzemeye bakır ve karbon fiber takviyeler yapmanın çekme ve eğilme dayanımlarını düşürdüğü görülmüştür.

Kaynakça

  • Arpan MFZIM, Hoong LJ, 2019. Effect of Printing Temperature on Mechanical Properties of Copper Metal Polylactide Acid. AIP Conference Proceedings, 2137:1.
  • ASTM, 2014. D 638. Standard test method for tensile properties of plastics. American Society for Testing and Materials Standard.
  • Ayatollahi MR, Nabavi-Kivi A, Bahrami B, Yahya MY, Khosravani MR, 2020. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics, 237:107225.
  • BS EN ISO 178,2003.Plastics determination of flexural properties. British Standard.
  • Dobrescu T, Pascu NE, Jiga G, Simion I, Adır V, Enciu G, Tudose DI, 2019. Tensile Behavior of PLA and PLA Composite Materials Under Different Printing Parameters. Materiale Plastice, 56 (4):783.
  • Ferreira RTL, Amatte IC, Dutra TA, Bürger D, 2017. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B, 124:88-100.
  • Gomez-Gras G, Jerez-Mesa R, Travieso-Rodriguez JA, Lluma-Fuentes J, 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials and Design, 140:278-285.
  • Hinchcliffe SA, Hess KM, Srubar III WV, 2016. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Composites Part B, 95:346-354.
  • Kaya MF, Kayataş Demir N, Hüner B, Özcan RU, 2019. Effect of copper coating on the physical and electrochemical properties of conductive pla filament. Internatıonal Journal Of 3d Printing Technologies And Digital Industry, 3:2:128-136.
  • Liu Z, Lei Q, Xing S, 2019. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. Journal of Materials Research and Technology, 8(5):3741-3751.
  • Sağbaş B, 2018. Surface texture characterization and parameter optimization of fused deposition modelling process. Düzce University Journal of Science & Technology, 6: 1028-1037.
  • Sood AK, Equbal A, Toppo V, Ohdar RK, Mahapatra SS, 2012. An investigation on sliding wear of FDM built parts. CIRP Journal of Manufacturing Science and Technology, 5:48–54.
  • Valerga AP, Batista M, Salguero J, Girot F, 2018. Influence of PLA filament conditions on characteristics of FDM parts. Materials, 11:1322.
  • Zhang X, Chen L, Mulholland T, Osswald TA, 2019. Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling. SN Applied Sciences, 1:616.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Mahir Uzun 0000-0002-0907-6875

Yusuf Eren Erdoğdu 0000-0003-3255-8466

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 24 Eylül 2020
Kabul Tarihi 15 Ekim 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uzun, M., & Erdoğdu, Y. E. (2020). Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması. Journal of the Institute of Science and Technology, 10(4), 2800-2808. https://doi.org/10.21597/jist.799230
AMA Uzun M, Erdoğdu YE. Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2020;10(4):2800-2808. doi:10.21597/jist.799230
Chicago Uzun, Mahir, ve Yusuf Eren Erdoğdu. “Eriyik Yığma Modellemesi Ile Üretimde Takviyesiz Ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması”. Journal of the Institute of Science and Technology 10, sy. 4 (Aralık 2020): 2800-2808. https://doi.org/10.21597/jist.799230.
EndNote Uzun M, Erdoğdu YE (01 Aralık 2020) Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması. Journal of the Institute of Science and Technology 10 4 2800–2808.
IEEE M. Uzun ve Y. E. Erdoğdu, “Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 4, ss. 2800–2808, 2020, doi: 10.21597/jist.799230.
ISNAD Uzun, Mahir - Erdoğdu, Yusuf Eren. “Eriyik Yığma Modellemesi Ile Üretimde Takviyesiz Ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması”. Journal of the Institute of Science and Technology 10/4 (Aralık 2020), 2800-2808. https://doi.org/10.21597/jist.799230.
JAMA Uzun M, Erdoğdu YE. Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:2800–2808.
MLA Uzun, Mahir ve Yusuf Eren Erdoğdu. “Eriyik Yığma Modellemesi Ile Üretimde Takviyesiz Ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması”. Journal of the Institute of Science and Technology, c. 10, sy. 4, 2020, ss. 2800-8, doi:10.21597/jist.799230.
Vancouver Uzun M, Erdoğdu YE. Eriyik Yığma Modellemesi ile Üretimde Takviyesiz ve Takviyeli PLA Kullanımının Mekanik Özelliklere Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(4):2800-8.

Cited By