Araştırma Makalesi
BibTex RIS Kaynak Göster

Examining the Function of Meromorphic with Using the Linear Convolution Operator

Yıl 2021, , 609 - 616, 01.03.2021
https://doi.org/10.21597/jist.807358

Öz

In this study, it is mentioned that meromorphic functions are univalent functions that
are analytical everywhere. Complex analytical transformations were investigated by mentioning the
necessary form for f (z) to have meromorphic function. It is a function that satisfies the condition
  0 hz  . For analytic functions of f and g in the D unit disk, ()fz shows the meromorphic
function class with P and subclasses of the P meromorphic analytical function class using the
subordination principle between functions with the help of Hadamard product and linear operators. In
this way proves is provided.

Kaynakça

  • Alexander JW, 1915. Functions which map the interior of the unit circle upon simple regions, Annals of Math. 17, 15-22.
  • Cho NE, Owa S, 2004. Partial Sums of certain meromorphic functions, J. Inequal. Pure and Appl. Math., 5(2) Art. 30.
  • Cho NE, Kim IH, 2007. Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu., 187 (1), 115 121.
  • Dziok J, Srivastava HM, 2003. Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) ,7-18.
  • Gonchar AA, Havin VP, Nikolski NK, 2001. Complex Analysis I. Springer-Verlag, pp 4, Newyork.Goodman A W, 1983. Univalent functions, Vol. I, Mariner Publ. Co., Tampa, FI..
  • Krantz SG, 1999. Handbook of Complex Variables, , Birkhuser, Boston, MA.
  • Liu J, Owa S, 1998. On certain meromorphic p-valent functions, Taiwanese J. Math. 2(1) , pp. 107-110.
  • MacGregor TH, Thomas HA, 1974/75. Subordination for convex functions of order . J. London Math. Soc. (2) 9, 530-536.
  • Marx A, 1936. Untersuchungen ¸ber schlichte Funktionen, Math. Ann. 107, 40-67.
  • Miller SS, Mocanu PT, 1985. On some classes of first order differential subordinations, Michigan Math. J. , 32 ,185-195.
  • Miller J, 1970. Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 , 220-228.
  • Mogra L, 1991. Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl., 157 ,10-16.
  • Nevanlinna R, 1921. über die konforme Abbildung von Sterngebieten, Ofvers. Finska 58 Vet. Soc. Förh., 53 (A), Nr. 6.
  • Nunokawa M, Ahuja OP, 2001. On meromorphic starlike and convex functions, Indian Pure Appl. Math., 32(7), 1027-1032.
  • Pommerenke Ch, 1963. On meromorphic starlike functions. Pacific J. Math. 13 221-235.
  • Royster WC, 1963. Meromorphic Starlike, Trans. Amer. Math. Soc. Vol. 107, No. 2 , pp. 300-308.
  • Srivastava HM, Owa S, 1986. A certain one parameter additive family of operators defined on analytic functions, Journal of mathematıcal analysıs and applıcatıons 118, 80-87.
  • Strohhacker E, 1933. Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37, 356-380.

Examining the Function of Meromorphic with Using the Linear Convolution Operator

Yıl 2021, , 609 - 616, 01.03.2021
https://doi.org/10.21597/jist.807358

Öz

In this study, it is mentioned that meromorphic functions are univalent functions that
are analytical everywhere. Complex analytical transformations were investigated by mentioning the
necessary form for f (z) to have meromorphic function. It is a function that satisfies the condition
  0 hz  . For analytic functions of f and g in the D unit disk, ()fz shows the meromorphic
function class with P and subclasses of the P meromorphic analytical function class using the
subordination principle between functions with the help of Hadamard product and linear operators. In
this way proves is provided.

Kaynakça

  • Alexander JW, 1915. Functions which map the interior of the unit circle upon simple regions, Annals of Math. 17, 15-22.
  • Cho NE, Owa S, 2004. Partial Sums of certain meromorphic functions, J. Inequal. Pure and Appl. Math., 5(2) Art. 30.
  • Cho NE, Kim IH, 2007. Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu., 187 (1), 115 121.
  • Dziok J, Srivastava HM, 2003. Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) ,7-18.
  • Gonchar AA, Havin VP, Nikolski NK, 2001. Complex Analysis I. Springer-Verlag, pp 4, Newyork.Goodman A W, 1983. Univalent functions, Vol. I, Mariner Publ. Co., Tampa, FI..
  • Krantz SG, 1999. Handbook of Complex Variables, , Birkhuser, Boston, MA.
  • Liu J, Owa S, 1998. On certain meromorphic p-valent functions, Taiwanese J. Math. 2(1) , pp. 107-110.
  • MacGregor TH, Thomas HA, 1974/75. Subordination for convex functions of order . J. London Math. Soc. (2) 9, 530-536.
  • Marx A, 1936. Untersuchungen ¸ber schlichte Funktionen, Math. Ann. 107, 40-67.
  • Miller SS, Mocanu PT, 1985. On some classes of first order differential subordinations, Michigan Math. J. , 32 ,185-195.
  • Miller J, 1970. Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 , 220-228.
  • Mogra L, 1991. Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl., 157 ,10-16.
  • Nevanlinna R, 1921. über die konforme Abbildung von Sterngebieten, Ofvers. Finska 58 Vet. Soc. Förh., 53 (A), Nr. 6.
  • Nunokawa M, Ahuja OP, 2001. On meromorphic starlike and convex functions, Indian Pure Appl. Math., 32(7), 1027-1032.
  • Pommerenke Ch, 1963. On meromorphic starlike functions. Pacific J. Math. 13 221-235.
  • Royster WC, 1963. Meromorphic Starlike, Trans. Amer. Math. Soc. Vol. 107, No. 2 , pp. 300-308.
  • Srivastava HM, Owa S, 1986. A certain one parameter additive family of operators defined on analytic functions, Journal of mathematıcal analysıs and applıcatıons 118, 80-87.
  • Strohhacker E, 1933. Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37, 356-380.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Hasan Şahin 0000-0002-5227-5300

Yayımlanma Tarihi 1 Mart 2021
Gönderilme Tarihi 8 Ekim 2020
Kabul Tarihi 14 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şahin, H. (2021). Examining the Function of Meromorphic with Using the Linear Convolution Operator. Journal of the Institute of Science and Technology, 11(1), 609-616. https://doi.org/10.21597/jist.807358
AMA Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. Iğdır Üniv. Fen Bil Enst. Der. Mart 2021;11(1):609-616. doi:10.21597/jist.807358
Chicago Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology 11, sy. 1 (Mart 2021): 609-16. https://doi.org/10.21597/jist.807358.
EndNote Şahin H (01 Mart 2021) Examining the Function of Meromorphic with Using the Linear Convolution Operator. Journal of the Institute of Science and Technology 11 1 609–616.
IEEE H. Şahin, “Examining the Function of Meromorphic with Using the Linear Convolution Operator”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 1, ss. 609–616, 2021, doi: 10.21597/jist.807358.
ISNAD Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology 11/1 (Mart 2021), 609-616. https://doi.org/10.21597/jist.807358.
JAMA Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:609–616.
MLA Şahin, Hasan. “Examining the Function of Meromorphic With Using the Linear Convolution Operator”. Journal of the Institute of Science and Technology, c. 11, sy. 1, 2021, ss. 609-16, doi:10.21597/jist.807358.
Vancouver Şahin H. Examining the Function of Meromorphic with Using the Linear Convolution Operator. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(1):609-16.