Review
BibTex RIS Cite

Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları

Year 2021, , 943 - 959, 01.06.2021
https://doi.org/10.21597/jist.857775

Abstract

Salvia officinalis (tıbbi adaçayı) türünün dünyada kullanım alanı ve pazar talebi giderek artmaktadır.
Son yıllarda ülkemizin farklı illerinde yetiştiriciliği yapılmakta olan bu türün her yıl dünya çapında pek çok
ülkeye ihraç edilmesiyle önemli miktarlarda döviz girdisi elde edilmektedir. İç ve dış pazarda önemli bir yere
sahip olan Salvia officinalis yetiştiriciliğinde kalite ve verim söz konusu olduğunda çevresel faktörlerin bitki
üzerine etkilerinin bilinmesi önemlidir. Bu derlemede Salvia officinalis yetiştiriciliği uygulamalarında bitkilerin
bazı abiyotik stres faktörlerine verdikleri yanıtlar araştırılmıştır. Araştırmalarda farklı abiyotik streslerin Salvia
officinalis türünde farklı tepkileri tetiklediği anlaşılmıştır. Bazı abiyotik stres faktörlerinin Salvia officinalis
üzerinde avantaj olarak görülebilecek en önemli etkisi ise, fitofarmakon olarak kullanılabilecek etkili bileşiklerin
istenen konsantrasyonlarının söz konusu stres faktörlerinin, yetiştiricilikte kasıtlı olarak uygulanması ile elde
edilebilir olmasıdır.

References

  • Abreu ME, Munné-Bosch S, 2008. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64 (2):105-112.
  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W, 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9): 2026-2032.
  • Asada K, 1999. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review Of Plant Biology, 50 (1): 601-639.
  • Asensi-Fabado MA, Oliván A, Munné-Bosch S, 2013. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, 94: 57-65.
  • Aziz EE, Sabry RM, Ahmed SS, 2013. Plant Growth and Essential Oil Production of Sage (Salvia Officinalis L.) and Curly-Leafed Parsley (Petroselinum Crispum Ssp. Crispum L.) Cultivated Under Salt Stress Conditions. World Applied Sciences Journal, 28:785-796.
  • Başer KHC, 2002. Aromatic Biodiversity Among the Flowering Plant Taxa of Turkey. Pure and Applied Chemistry, 74 (4): 527-545.
  • Bayram E, Sönmez Ç, 2006. Adaçayı Yetiştiriciliği. EÜ Tar. Uyg. ve Araş. Merkezi Yayım Bülteni, (48).
  • Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B, 2011. Drought Effects on Polyphenol Composition and Antioxidant Activities in Aerial Parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33 (4): 1103-1111.
  • Bettaieb I, Zakhama N, Wannes WA, Kchouk M, Marzouk B, 2009. Water Deficit Effects on Salvia officinalis Fatty Acids and Essential Oils Composition. Scientia Horticulturae, 120 (2): 271-275.
  • Bruce TJ, Matthes MC, Napier JA, Pickett JA, 2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Science, 173 (6): 603-608.
  • Büyük İ, Soydam-Aydın S, Aras S, 2012. Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turkish Bulletin of Hygiene and Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 69 (2).
  • Castrillo M, Vizcaíno D, Moreno E, Latorraca Z, 2005. Specific Leaf Mass, Fresh: Dry Weight Ratio, Sugar and Protein Contents in Species of Lamiaceae From Different Light Environments. Revista De Biología Tropical, 53 (1-2): 23-28.
  • Chaves MM, Maroco JP, Pereira JS, 2003. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Functional Plant Biology, 30 (3): 239-264.
  • Çamlıca M, Yaldız G, Özen F, Başol A, Aşkın H, 2019. Effects of Selenium Applications on Salt Stress in Sage and Mountain Tea. Turkish Journal of Agriculture-Food Science and Technology, 7 (sp2): 29-35.
  • Çulha Ş, Çakırlar H, 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11 (2): 11-34.
  • Dall'Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R, 2006. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivounder strong light. BMC Plant Biology, 6 (1): 32.
  • Dolferus R, 2014. To grow or not to grow: a stressful decision for plants. Plant Science, 229: 247-261.
  • Elmas S, Elmas O, 2021. Salvia fruticosa’nın (Anadolu Adaçayı) Terapötik Etkileri. International Journal of Life Sciences and Biotechnology, 4 (1-2): 114-137.
  • Eroğlu İ, 2007. Tuz Stresinin Bazı Fasulye (Phaseolus vulgaris L.) Kültür Çeşitlerinde Tohum Çimlenmesi ve Fide Gelişimi Üzerine Etkileri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Es-sbihi FZ, Hazzoumi Z, Joutei KA, 2020. Effect of salicylic acid foliar application on growth, glandular hairs and essential oil yield in Salvia officinalis L. grown under zinc stress. Chemical and Biological Technologies in Agriculture, 7 (1): 1-11.
  • Falk J, Munné-Bosch S, 2010. Tocochromanol functions in plants: antioxidation and beyond. Journal of Experimental Botany, 61 (6): 1549-1566.
  • Foyer CH, Noctor G, 2000. Tansley review No. 112: oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146 (3): 359-388.
  • Galis I, Gaquerel E, Pandey SP., Baldwin IT, 2009. Molecular mechanisms underlying plant memory in JA‐mediated defence responses. Plant, Cell & Environment, 32(6): 617-627.
  • García-Caparrós P, Romero MJ, Llanderal A, Cermeño P, Lao MT, Segura ML, 2019. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae species. Water, 11 (3): 573.
  • Govahi M, Ghalavand A, Nadjafi F, Sorooshzadeh A, 2015. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Industrial Crops and Products, 74: 20-27.
  • Graf A, Smith AM, 2011. Starch and the clock: the dark side of plant productivity. Trends in Plant Science, 16 (3): 169-175.
  • Güner A, Aslan S, Ekim T, Vural M, Babac M, 2012. A checklist of the Flora of Turkey (Vascular Plants). Flora Dizisi, 1:1290.
  • Güneş A, Adak S, İnal A, Alpaslan M, Eraslan F, Çiçek N, Kayan N, Soylu B, 2006. Mercimek ve Nohut Bitkilerinde Kuraklığa Bağlı Oksidatif Stres ve Fizyolojik Tolerans Mekanizmalarının Belirlenmesi. Bilimsel Araştırma Projesi Kesin Raporu.
  • Heil M, Baldwin I T, 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 7 (2):61-67.
  • Hendawy S, Khalid KA, 2005. Response of Sage (Salvia officinalis L.) Plants to Zinc Application Under Different Salinity Levels. J. Appl. Sci. Res 1 (2): 147-155.
  • Hernández I, Alegre L, Munné-Bosch S, 2004. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree physiology, 24 (11): 1303-1311.
  • Ivanitskikh A, Tarakanov I, 2014. Effect of light spectral quality on essential oil components in Ocimum basilicum and Salvia officinalis plants. International Journal of Secondary Metabolite, 1 (1): 19.
  • Jouyban Z, 2012. The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2 (1): 7-10.
  • Khan SA, Li MZ, Wang SM, Yin HJ, 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 19 (6): 1634.
  • Kılıç S, Bölükbaşi M, 2020. Phytochemical accumulation with photomorphogenesis and physiology of Salvia officinalis L. Acta Scientiarum Polonorum-Hortorum Cultus, 19 (5): 101-113.
  • Kulak M, Gul F, Sekeroglu N, 2020. Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and Products, 145: 112078.
  • Kumlay AM, Eryiğit T, 2011. Bitkilerde büyüme ve gelişmeyi düzenleyici maddeler: bitki hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1 (2): 47-56.
  • Lakušić B, Ristić M, Slavkovska V, Stojanović D, Lakušić D, 2013. Variations in Essential Oil Yields and Compositions of Salvia officinalis (Lamiaceae) at Different Developmental Stages. Botanica Serbica, 37 (2): 127-139.
  • Larcher W, 2000. Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant biosystems, 134 (3): 279-295.
  • Lu Y, Foo LY, 2001. Antioxidant Activities of Polyphenols from Sage (Salvia officinalis). Food Chemistry, 75 (2): 197-202.
  • Mansori M, Farouk I, Hsissou D, El Kaoua M, 2019. Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. Journal of Materials and Environmental Sciences, 10 (8): 756-766.
  • Mapes C, Xu Y, 2014. Photosynthesis, Vegetative Habit and Culinary Properties of Sage (Salvia officinalis) in Response to Low-Light Conditions. Canadian Journal of Plant Science, 94 (5): 881-889.
  • Marchica A, Lorenzini G, Papini R, Bernardi R, Nali C, Pellegrini E, 2019. Signalling molecules responsive to ozone-induced oxidative stress in Salvia officinalis. Science of The Total Environment, 657: 568-576.
  • Martínez-Natarén DA, Villalobos-Perera PA, Munguía-Rosas MA, 2018. Morphology and density of glandular trichomes of Ocimum campechianum and Ruellia nudiflora in contrasting light environments: A scanning electron microscopy study. Flora, 248: 28-33.
  • Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51 (345): 659-668.
  • McClung CR, 2008. Comes a time. Current Opinion in Plant Biology, 11(5): 514-520.
  • Miraj S, Kiani S, 2016. A Review Study of Therapeutic Effects of Salvia officinalis L‏. Der Pharmacia Lettre, 8 (6).
  • Munné-Bosch S, Alegre L, 2000. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210 (6): 925-931.
  • Munné-Bosch S, Alegre L, 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31 (3): 203-216.
  • Munné-Bosch S, Mueller M, Schwarz K, Alegre L, 2001. Diterpenes and Antioxidative Protection in Drought-Stressed Salvia officinalis Plants. Journal of Plant Physiology, 158 (11): 1431-1437.
  • Nowak M, Kleinwaechter M, Manderscheid R, Weigel HJ, Selmar D, 2010. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality 83 (2): 133-136.
  • O’Leary N, Moroni P, 2016. Las especies de Salvia (Lamiaceae) para Argentina. Darwiniana, 4 (1):91-131.
  • Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP, 2014. Response of Plants to Water Stress. Frontiers in Plant Science, 5:86.
  • Örs S, Ekinci M, 2015. Kuraklık Stresi ve Bitki Fizyolojisi. Derim, 32 (2): 237-250.
  • Öztürk NZ, 2015. Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal Of Agriculture-Food Science And Technology, 3 (5): 307-315.
  • Pellegrini E, Francini A, Lorenzini G, Nali C, 2015. Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. Environmental Science and Pollution Research, 22 (17): 13083-13093.
  • Peltzer D, Dreyer E, Polle A, 2002. Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 40 (2): 141-150.
  • Rezai S, Etemadi N, Nikbakht A, Yousefi M, Majidi MM, 2018. Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content in Sage (Salvia officinalis L.). Horticultural Science and Technology, 36 (1): 46-57.
  • Rguez S, Msaada K, Daami-Remadi M, Chayeb I, Bettaieb Rebey I, Hammami M, Hamrouni-Sellami I, (2019). Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153 (2): 264-272.
  • Sahar K, Amin B, Taher NM, 2011. The salicylic acid effect on the Salvia officinalis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology & Biochemistry, 7 (4).
  • Said-Al Ahl H, Omer E, 2011. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57 (2).
  • Selmar D, Kleinwächter M, 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products, 42, 558-566.
  • Sönmez Ç, 2015. Bitki-Su İlişkilerinin Tıbbi Adaçayı (Salvia officinalis L.)'Nın Verim, Uçucu Yağ Üretimi ve Kalitesi Üzerine Etkileri: Biyometrik Ve Fizyolojik İncelemeler. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Taarit MB, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B, 2009. Plant Growth, Essential Oil Yield and Composition of Sage (Salvia officinalis L.) Fruits Cultivated Under Salt Stress Conditions. Industrial Crops and Products, 30 (3): 333-337.
  • Taarit MB, Msaada K, Hosni K, Marzouk B, 2010. Changes in Fatty Acid and Essential Oil Composition of Sage (Salvia Officinalis L.) Leaves Under NaCl Stress. Food Chemistry, 119 (3): 951-956.
  • Tiryaki İ, 2018. Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. Tarim ve Doğa Dergisi, 21 (5): 800.
  • Topçu G, 2006. Bioactive Triterpenoids from Salvia Species. Journal of Natural Products, 69 (3): 482-487.
  • Torun H, 2019. Cobalt+ Salt-Stressed Salvia officinalis: ROS Scavenging Capacity and Antioxidant Potency. International Journal of Secondary Metabolite, 6 (1): 49-61.
  • Tounekti T, Abreu ME, Khemira H, Munné-Bosch S, 2012. Canopy Position Determines the Photoprotective Demand and Antioxidant Protection of Leaves in Salt-Stressed Salvia officinalis L. Plants. Environmental and Experimental Botany, 78:146-156.
  • Tounekti T, Hernández I, Müller M, Khemira H, Munné-Bosch S, 2011. Kinetin Applications Alleviate Salt Stress and Improve the Antioxidant Composition of Leaf Extracts in Salvia officinalis. Plant Physiology and Biochemistry, 49 (10): 1165-1176.
  • Tounekti T, Hernández, I, Munné-Bosch S, 2013. Salicylic acid biosynthesis and role in modulating terpenoid and flavonoid metabolism in plant responses to abiotic stress. Salicylic acid. Springer, 141-162.
  • TÜİK (2020): Dış Ticaret İstatistikleri. https://biruni.tuik.gov.tr/disticaretapp/disticaret.zul?param1=25&param2=0&sitcrev=0&isicrev=0&sayac=5802, (Erişim tarihi: 23.12. 2020).
  • TÜİK (2021): Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020-33737, (Erişim tarihi 25.02.2021).
  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V, 2014. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. South African Journal of Botany, 93: 92-97.
  • Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W, 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168 (6): 585-593.
  • Xu X Q, Beardall J, 1997. Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry, 45 (4): 655-658.
  • Yuan L, Liu X, Luo M, Yang S, Wu K, 2013. Involvement of Histone Modifications in Plant Abiotic Stress Responses. Journal of Integrative Plant Biology, 55 (10): 892-901.
  • Yurdcu S, 2019. Bazı Tıbbi Adaçayı (Salvia Officinalis L.) Hatlarının Kuraklık Stresine Dayanıklılığının Belirlenmesi. Çankırı Karatekin Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Zervoudakis G, Salahas G, Kaspiris G, Konstantopoulou E, 2012. Influence of Light Intensity on Growth and Physiological Characteristics of Common Sage (Salvia officinalis L.). Brazilian Archives of Biology and Technology, 55 (1): 89-95.

Responses of Salvia officinalis (Common Sage) to Some Abiotic Stress Factors

Year 2021, , 943 - 959, 01.06.2021
https://doi.org/10.21597/jist.857775

Abstract

In the world the usage area and market demand of Salvia officinalis (common sage) species is
gradually increasing. In recent years, this species, which has been cultivated in different provinces of our country, is exported to many countries around the world every year, and a significant amount of foreign currency input is obtained. It is important to know the effects of environmental factors on the plant when it comes to quality and yield in Salvia officinalis cultivation, which has an important place in domestic and foreign markets. In this review, the responses of plants to some abiotic stress factors in Salvia officinalis cultivation practices were investigated. Research has shown that different abiotic stresses trigger different responses in the Salvia officinalis species. The most important advantage of some abiotic stress factors on Salvia officinalis is that the high concentration of an active substance desired to be used as a hytopharmacon can be achieved by deliberate application of some stress factors.

References

  • Abreu ME, Munné-Bosch S, 2008. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64 (2):105-112.
  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W, 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9): 2026-2032.
  • Asada K, 1999. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review Of Plant Biology, 50 (1): 601-639.
  • Asensi-Fabado MA, Oliván A, Munné-Bosch S, 2013. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, 94: 57-65.
  • Aziz EE, Sabry RM, Ahmed SS, 2013. Plant Growth and Essential Oil Production of Sage (Salvia Officinalis L.) and Curly-Leafed Parsley (Petroselinum Crispum Ssp. Crispum L.) Cultivated Under Salt Stress Conditions. World Applied Sciences Journal, 28:785-796.
  • Başer KHC, 2002. Aromatic Biodiversity Among the Flowering Plant Taxa of Turkey. Pure and Applied Chemistry, 74 (4): 527-545.
  • Bayram E, Sönmez Ç, 2006. Adaçayı Yetiştiriciliği. EÜ Tar. Uyg. ve Araş. Merkezi Yayım Bülteni, (48).
  • Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B, 2011. Drought Effects on Polyphenol Composition and Antioxidant Activities in Aerial Parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33 (4): 1103-1111.
  • Bettaieb I, Zakhama N, Wannes WA, Kchouk M, Marzouk B, 2009. Water Deficit Effects on Salvia officinalis Fatty Acids and Essential Oils Composition. Scientia Horticulturae, 120 (2): 271-275.
  • Bruce TJ, Matthes MC, Napier JA, Pickett JA, 2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Science, 173 (6): 603-608.
  • Büyük İ, Soydam-Aydın S, Aras S, 2012. Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turkish Bulletin of Hygiene and Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 69 (2).
  • Castrillo M, Vizcaíno D, Moreno E, Latorraca Z, 2005. Specific Leaf Mass, Fresh: Dry Weight Ratio, Sugar and Protein Contents in Species of Lamiaceae From Different Light Environments. Revista De Biología Tropical, 53 (1-2): 23-28.
  • Chaves MM, Maroco JP, Pereira JS, 2003. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Functional Plant Biology, 30 (3): 239-264.
  • Çamlıca M, Yaldız G, Özen F, Başol A, Aşkın H, 2019. Effects of Selenium Applications on Salt Stress in Sage and Mountain Tea. Turkish Journal of Agriculture-Food Science and Technology, 7 (sp2): 29-35.
  • Çulha Ş, Çakırlar H, 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11 (2): 11-34.
  • Dall'Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R, 2006. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivounder strong light. BMC Plant Biology, 6 (1): 32.
  • Dolferus R, 2014. To grow or not to grow: a stressful decision for plants. Plant Science, 229: 247-261.
  • Elmas S, Elmas O, 2021. Salvia fruticosa’nın (Anadolu Adaçayı) Terapötik Etkileri. International Journal of Life Sciences and Biotechnology, 4 (1-2): 114-137.
  • Eroğlu İ, 2007. Tuz Stresinin Bazı Fasulye (Phaseolus vulgaris L.) Kültür Çeşitlerinde Tohum Çimlenmesi ve Fide Gelişimi Üzerine Etkileri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Es-sbihi FZ, Hazzoumi Z, Joutei KA, 2020. Effect of salicylic acid foliar application on growth, glandular hairs and essential oil yield in Salvia officinalis L. grown under zinc stress. Chemical and Biological Technologies in Agriculture, 7 (1): 1-11.
  • Falk J, Munné-Bosch S, 2010. Tocochromanol functions in plants: antioxidation and beyond. Journal of Experimental Botany, 61 (6): 1549-1566.
  • Foyer CH, Noctor G, 2000. Tansley review No. 112: oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146 (3): 359-388.
  • Galis I, Gaquerel E, Pandey SP., Baldwin IT, 2009. Molecular mechanisms underlying plant memory in JA‐mediated defence responses. Plant, Cell & Environment, 32(6): 617-627.
  • García-Caparrós P, Romero MJ, Llanderal A, Cermeño P, Lao MT, Segura ML, 2019. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae species. Water, 11 (3): 573.
  • Govahi M, Ghalavand A, Nadjafi F, Sorooshzadeh A, 2015. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Industrial Crops and Products, 74: 20-27.
  • Graf A, Smith AM, 2011. Starch and the clock: the dark side of plant productivity. Trends in Plant Science, 16 (3): 169-175.
  • Güner A, Aslan S, Ekim T, Vural M, Babac M, 2012. A checklist of the Flora of Turkey (Vascular Plants). Flora Dizisi, 1:1290.
  • Güneş A, Adak S, İnal A, Alpaslan M, Eraslan F, Çiçek N, Kayan N, Soylu B, 2006. Mercimek ve Nohut Bitkilerinde Kuraklığa Bağlı Oksidatif Stres ve Fizyolojik Tolerans Mekanizmalarının Belirlenmesi. Bilimsel Araştırma Projesi Kesin Raporu.
  • Heil M, Baldwin I T, 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 7 (2):61-67.
  • Hendawy S, Khalid KA, 2005. Response of Sage (Salvia officinalis L.) Plants to Zinc Application Under Different Salinity Levels. J. Appl. Sci. Res 1 (2): 147-155.
  • Hernández I, Alegre L, Munné-Bosch S, 2004. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree physiology, 24 (11): 1303-1311.
  • Ivanitskikh A, Tarakanov I, 2014. Effect of light spectral quality on essential oil components in Ocimum basilicum and Salvia officinalis plants. International Journal of Secondary Metabolite, 1 (1): 19.
  • Jouyban Z, 2012. The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2 (1): 7-10.
  • Khan SA, Li MZ, Wang SM, Yin HJ, 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 19 (6): 1634.
  • Kılıç S, Bölükbaşi M, 2020. Phytochemical accumulation with photomorphogenesis and physiology of Salvia officinalis L. Acta Scientiarum Polonorum-Hortorum Cultus, 19 (5): 101-113.
  • Kulak M, Gul F, Sekeroglu N, 2020. Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and Products, 145: 112078.
  • Kumlay AM, Eryiğit T, 2011. Bitkilerde büyüme ve gelişmeyi düzenleyici maddeler: bitki hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1 (2): 47-56.
  • Lakušić B, Ristić M, Slavkovska V, Stojanović D, Lakušić D, 2013. Variations in Essential Oil Yields and Compositions of Salvia officinalis (Lamiaceae) at Different Developmental Stages. Botanica Serbica, 37 (2): 127-139.
  • Larcher W, 2000. Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant biosystems, 134 (3): 279-295.
  • Lu Y, Foo LY, 2001. Antioxidant Activities of Polyphenols from Sage (Salvia officinalis). Food Chemistry, 75 (2): 197-202.
  • Mansori M, Farouk I, Hsissou D, El Kaoua M, 2019. Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. Journal of Materials and Environmental Sciences, 10 (8): 756-766.
  • Mapes C, Xu Y, 2014. Photosynthesis, Vegetative Habit and Culinary Properties of Sage (Salvia officinalis) in Response to Low-Light Conditions. Canadian Journal of Plant Science, 94 (5): 881-889.
  • Marchica A, Lorenzini G, Papini R, Bernardi R, Nali C, Pellegrini E, 2019. Signalling molecules responsive to ozone-induced oxidative stress in Salvia officinalis. Science of The Total Environment, 657: 568-576.
  • Martínez-Natarén DA, Villalobos-Perera PA, Munguía-Rosas MA, 2018. Morphology and density of glandular trichomes of Ocimum campechianum and Ruellia nudiflora in contrasting light environments: A scanning electron microscopy study. Flora, 248: 28-33.
  • Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51 (345): 659-668.
  • McClung CR, 2008. Comes a time. Current Opinion in Plant Biology, 11(5): 514-520.
  • Miraj S, Kiani S, 2016. A Review Study of Therapeutic Effects of Salvia officinalis L‏. Der Pharmacia Lettre, 8 (6).
  • Munné-Bosch S, Alegre L, 2000. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210 (6): 925-931.
  • Munné-Bosch S, Alegre L, 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31 (3): 203-216.
  • Munné-Bosch S, Mueller M, Schwarz K, Alegre L, 2001. Diterpenes and Antioxidative Protection in Drought-Stressed Salvia officinalis Plants. Journal of Plant Physiology, 158 (11): 1431-1437.
  • Nowak M, Kleinwaechter M, Manderscheid R, Weigel HJ, Selmar D, 2010. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality 83 (2): 133-136.
  • O’Leary N, Moroni P, 2016. Las especies de Salvia (Lamiaceae) para Argentina. Darwiniana, 4 (1):91-131.
  • Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP, 2014. Response of Plants to Water Stress. Frontiers in Plant Science, 5:86.
  • Örs S, Ekinci M, 2015. Kuraklık Stresi ve Bitki Fizyolojisi. Derim, 32 (2): 237-250.
  • Öztürk NZ, 2015. Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal Of Agriculture-Food Science And Technology, 3 (5): 307-315.
  • Pellegrini E, Francini A, Lorenzini G, Nali C, 2015. Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. Environmental Science and Pollution Research, 22 (17): 13083-13093.
  • Peltzer D, Dreyer E, Polle A, 2002. Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 40 (2): 141-150.
  • Rezai S, Etemadi N, Nikbakht A, Yousefi M, Majidi MM, 2018. Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content in Sage (Salvia officinalis L.). Horticultural Science and Technology, 36 (1): 46-57.
  • Rguez S, Msaada K, Daami-Remadi M, Chayeb I, Bettaieb Rebey I, Hammami M, Hamrouni-Sellami I, (2019). Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153 (2): 264-272.
  • Sahar K, Amin B, Taher NM, 2011. The salicylic acid effect on the Salvia officinalis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology & Biochemistry, 7 (4).
  • Said-Al Ahl H, Omer E, 2011. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57 (2).
  • Selmar D, Kleinwächter M, 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products, 42, 558-566.
  • Sönmez Ç, 2015. Bitki-Su İlişkilerinin Tıbbi Adaçayı (Salvia officinalis L.)'Nın Verim, Uçucu Yağ Üretimi ve Kalitesi Üzerine Etkileri: Biyometrik Ve Fizyolojik İncelemeler. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Taarit MB, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B, 2009. Plant Growth, Essential Oil Yield and Composition of Sage (Salvia officinalis L.) Fruits Cultivated Under Salt Stress Conditions. Industrial Crops and Products, 30 (3): 333-337.
  • Taarit MB, Msaada K, Hosni K, Marzouk B, 2010. Changes in Fatty Acid and Essential Oil Composition of Sage (Salvia Officinalis L.) Leaves Under NaCl Stress. Food Chemistry, 119 (3): 951-956.
  • Tiryaki İ, 2018. Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. Tarim ve Doğa Dergisi, 21 (5): 800.
  • Topçu G, 2006. Bioactive Triterpenoids from Salvia Species. Journal of Natural Products, 69 (3): 482-487.
  • Torun H, 2019. Cobalt+ Salt-Stressed Salvia officinalis: ROS Scavenging Capacity and Antioxidant Potency. International Journal of Secondary Metabolite, 6 (1): 49-61.
  • Tounekti T, Abreu ME, Khemira H, Munné-Bosch S, 2012. Canopy Position Determines the Photoprotective Demand and Antioxidant Protection of Leaves in Salt-Stressed Salvia officinalis L. Plants. Environmental and Experimental Botany, 78:146-156.
  • Tounekti T, Hernández I, Müller M, Khemira H, Munné-Bosch S, 2011. Kinetin Applications Alleviate Salt Stress and Improve the Antioxidant Composition of Leaf Extracts in Salvia officinalis. Plant Physiology and Biochemistry, 49 (10): 1165-1176.
  • Tounekti T, Hernández, I, Munné-Bosch S, 2013. Salicylic acid biosynthesis and role in modulating terpenoid and flavonoid metabolism in plant responses to abiotic stress. Salicylic acid. Springer, 141-162.
  • TÜİK (2020): Dış Ticaret İstatistikleri. https://biruni.tuik.gov.tr/disticaretapp/disticaret.zul?param1=25&param2=0&sitcrev=0&isicrev=0&sayac=5802, (Erişim tarihi: 23.12. 2020).
  • TÜİK (2021): Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020-33737, (Erişim tarihi 25.02.2021).
  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V, 2014. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. South African Journal of Botany, 93: 92-97.
  • Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W, 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168 (6): 585-593.
  • Xu X Q, Beardall J, 1997. Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry, 45 (4): 655-658.
  • Yuan L, Liu X, Luo M, Yang S, Wu K, 2013. Involvement of Histone Modifications in Plant Abiotic Stress Responses. Journal of Integrative Plant Biology, 55 (10): 892-901.
  • Yurdcu S, 2019. Bazı Tıbbi Adaçayı (Salvia Officinalis L.) Hatlarının Kuraklık Stresine Dayanıklılığının Belirlenmesi. Çankırı Karatekin Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Zervoudakis G, Salahas G, Kaspiris G, Konstantopoulou E, 2012. Influence of Light Intensity on Growth and Physiological Characteristics of Common Sage (Salvia officinalis L.). Brazilian Archives of Biology and Technology, 55 (1): 89-95.
There are 79 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Agricultural, Veterinary and Food Sciences
Journal Section Biyoloji / Biology
Authors

Sinem Elmas 0000-0002-2872-9990

Publication Date June 1, 2021
Submission Date January 10, 2021
Acceptance Date February 26, 2021
Published in Issue Year 2021

Cite

APA Elmas, S. (2021). Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları. Journal of the Institute of Science and Technology, 11(2), 943-959. https://doi.org/10.21597/jist.857775
AMA Elmas S. Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları. J. Inst. Sci. and Tech. June 2021;11(2):943-959. doi:10.21597/jist.857775
Chicago Elmas, Sinem. “Salvia Officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 943-59. https://doi.org/10.21597/jist.857775.
EndNote Elmas S (June 1, 2021) Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları. Journal of the Institute of Science and Technology 11 2 943–959.
IEEE S. Elmas, “Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 943–959, 2021, doi: 10.21597/jist.857775.
ISNAD Elmas, Sinem. “Salvia Officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları”. Journal of the Institute of Science and Technology 11/2 (June 2021), 943-959. https://doi.org/10.21597/jist.857775.
JAMA Elmas S. Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları. J. Inst. Sci. and Tech. 2021;11:943–959.
MLA Elmas, Sinem. “Salvia Officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 943-59, doi:10.21597/jist.857775.
Vancouver Elmas S. Salvia officinalis (Tıbbi Adaçayı) Bitkisinin Bazı Abiyotik Stres Faktörlerine Yanıtları. J. Inst. Sci. and Tech. 2021;11(2):943-59.