Araştırma Makalesi
BibTex RIS Kaynak Göster

Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı

Yıl 2021, , 1354 - 1361, 01.06.2021
https://doi.org/10.21597/jist.878119

Öz

Bu çalışmada, nikel köpük üzerindeki Co3O4 nano-iğne dizileri (Co3O4/Ni köpük), basit tek-kap hidrotermal yöntemle sentezlenmiş ve ardından tek aşamalı ısıl işlem uygulanmıştır. Co3O4/Ni köpük nanokompozitlerinin yapısal ve morfolojojik analizleri; X-ışını kırınım spektroskopisi (XRD) ve alan emisyonlu taramalı elektron mikroskobu (FESEM) ile karakterize edilmiştir. Alkali çözeltide Co3O4/Ni köpük üzerinde metanolün elektrokimyasal oksidasyonu, dönüşümlü voltametri (CV) ve kronoamperometri (CA) teknikleri ile incelenmiştir. Düşük başlangıç potansiyeli (270 mV), yüksek akım yoğunluğu (67 mA cm-2) ve uzun elektro-oksidasyon kararlılığı (%86) ile Co3O4/Ni köpük mükemmel elektrokatalitik performans göstermiştir. Böylece, sentezlenen nanokompozitin doğrudan metanol yakıt hücreleri için yüksek performanslı platinsiz elektrokatalizörlere mükemmel bir aday olabileceği saptanmıştır.

Teşekkür

Bu çalışmanın yapılmasında laboratuvar alt yapısının kullanılmasına izin veren Atatürk Üniversitesi Fen Fakültesi Dekanlığı’na ve sentezlenen elektrotların karakterizasyonlarının gerçekleştirildiği Atatürk Üniversitesi Doğu Anadolu Yüksek Teknoloji Araştırma Merkezi’ne (DAYTAM) teşekkür ederim.

Kaynakça

  • Dincer I, 2000. Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4: 157-175.
  • Du X, Huang C, Zhang X,. 2019. Co3O4 arrays with tailored morphology as robust water oxidation and urea splitting catalyst. Journal of Alloys and Compounds, 809: 151821.
  • Gong L, Yang Z, Li K, Xing W, Liu C, Ge J, 2018. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry, 27: 1618-1628.
  • Hassen D, El-Safty SA, Tsuchiya K, Chatterjee A, Elmarakbi A, Shenashen MA, Sakai M, 2016. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells. Scientific Reports, 6:24330.
  • Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y, 2015. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science,8: 1404-1427.
  • Hoseini SJ, Bahrami M, Samadi Fard Z, Fatemeh Hashemi Fard S, Roushani, M, Agahi BH, Sarmoor SS, 2018. Designing of some platinum or palladium-based nanoalloys as effective electrocatalysts for methanol oxidation reaction. International Journal of Hydrogen Energy, 43: 15095-15111.
  • Jin L, Li X, Ming H, Wang H, Jia Z, Fu Y, Zheng J, 2014. Hydrothermal synthesis of Co3O4 with different morphologies towards efficient Li-ion storage. RSC Advances, 4: 6083-6089.
  • Kamarudin SK, Achmad F, Daud WRW, 2009. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 34: 6902-6916.
  • Kamyabi M, Martínez-Hincapié R, Feliu J, Herrero E, 2019. Effects of the Interfacial Structure on the Methanol Oxidation on Platinum Single Crystal Electrodes. Surfaces, 2(1): 177-192.
  • Li Y, Li FM, Meng XY, Li, SN, Zeng JH, Chen Y, 2018. Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 8(3): 1913–1920.
  • Liu Y, Teng H, Hou H, You T, 2009. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron., 24;3329-3334.
  • Lv CQ, Liu C, Wang GC, 2014. A DFT study of methanol oxidation on Co3O4. Catalysis Communications, 45:83-90.
  • Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM, 2007. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochimica Acta, 53: 400-426.
  • Qiao Y, Li, CM, 2011. Nanostructured catalysts in fuel cells. Journal of Materials Chemistry, 21: 4027-4036.
  • Rajeshkhanna G, Umeshbabu E, Ranga Rao G, 2017. Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. Journal of Colloid and Interface Science, 487:20-30.
  • Ramli ZAC, Kamarudin SK, 2018. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: a Review. Nanoscale Research Letters, 13: 410.
  • Salavati-Niasari M, Mir N, Davar F, 2009. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids, 70: 847-852.
  • Shinde VR, Mahadik SB, Gujar TP, Lokhande CD, 2006. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science, 252: 7487-7492.
  • Uddin MK, Baig U, 2019. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. Journal of Cleaner Production, 211: 1141-1153.
  • Urhan BK, Demir Ü, 2019. Electrochemical fabrication of Ni or Ni(OH)2@Ni nanoparticle-decorated reduced graphene oxide for supercapacitor applications. Electrochimica Acta, 302: 109-118.
  • Vennela AB, Mangalaraj D, Muthukumarasamy N, Agilan S, Hemalatha KV, 2019. Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. International Journal of Electrochemical Science, 14: 3535 – 3552.
  • Waszczuk P, Kim HS, Tong YY, Wieckowski A, Solla-Gullón J, Montiel V, Aldaz A, 2001. Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. Journal of Catalysis, Volume 203, 1-6.
  • Yetim NK, 2021. Hydrothermal synthesis of Co3O4 with different morphology: Investigation of magnetic and electrochemical properties. Journal of Molecular Structure, 1226: 129414.
  • Yuan Z, Zhao J, Meng F, Qin W, Chen Y, Yang M, Zhao Y, 2019. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. Journal of Alloys and Compounds, 793: 24-30.
  • Yuda A, Ashok A, Kumar A, 2020. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catalysis Reviews - Science and Engineering, https://doi.org/10.1080/01614940.2020.1802811.
  • Zhang X, Zhong H, Xu L, Wang S, Chi H, Pan Q, Zhang G, 2018. Fabrication of Co3O4/PEI-GO composites for gas-sensing applications at room temperature. Materials Research Bulletin, 102: 108-115.

Use of Co3O4/Ni Foam Nanocomposites as Electrode Material in Direct Methanol Fuel Cell

Yıl 2021, , 1354 - 1361, 01.06.2021
https://doi.org/10.21597/jist.878119

Öz

In this work, Co3O4 nanoneedle arrays on nickel foam (Co3O4/Ni foam) were directly synthesized by facile one step thermal treatment. The structural and morphological analysis of Co3O4/Ni foam nanocomposites were characterized by X-ray diffraction spectroscopy (XRD) and field emission scanning electron microscopy (FESEM). The electrochemical oxidation of methanol on Co3O4/Ni foam in alkaline solution was investigated by cyclic voltammetry (CV) and chronoamperometry (CA) techniques. The Co3O4/Ni foam showed excellent electrocatalytic performance with low onset potential (270 mV), high current density (67 mA cm-2) and long electro-oxidation stability (86%). Thus, it has been determined that the synthesized nanocomposite can be an excellent candidate for high performance platinum-free electrocatalysts directly for methanol fuel cells.

Kaynakça

  • Dincer I, 2000. Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4: 157-175.
  • Du X, Huang C, Zhang X,. 2019. Co3O4 arrays with tailored morphology as robust water oxidation and urea splitting catalyst. Journal of Alloys and Compounds, 809: 151821.
  • Gong L, Yang Z, Li K, Xing W, Liu C, Ge J, 2018. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry, 27: 1618-1628.
  • Hassen D, El-Safty SA, Tsuchiya K, Chatterjee A, Elmarakbi A, Shenashen MA, Sakai M, 2016. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells. Scientific Reports, 6:24330.
  • Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y, 2015. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science,8: 1404-1427.
  • Hoseini SJ, Bahrami M, Samadi Fard Z, Fatemeh Hashemi Fard S, Roushani, M, Agahi BH, Sarmoor SS, 2018. Designing of some platinum or palladium-based nanoalloys as effective electrocatalysts for methanol oxidation reaction. International Journal of Hydrogen Energy, 43: 15095-15111.
  • Jin L, Li X, Ming H, Wang H, Jia Z, Fu Y, Zheng J, 2014. Hydrothermal synthesis of Co3O4 with different morphologies towards efficient Li-ion storage. RSC Advances, 4: 6083-6089.
  • Kamarudin SK, Achmad F, Daud WRW, 2009. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 34: 6902-6916.
  • Kamyabi M, Martínez-Hincapié R, Feliu J, Herrero E, 2019. Effects of the Interfacial Structure on the Methanol Oxidation on Platinum Single Crystal Electrodes. Surfaces, 2(1): 177-192.
  • Li Y, Li FM, Meng XY, Li, SN, Zeng JH, Chen Y, 2018. Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 8(3): 1913–1920.
  • Liu Y, Teng H, Hou H, You T, 2009. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron., 24;3329-3334.
  • Lv CQ, Liu C, Wang GC, 2014. A DFT study of methanol oxidation on Co3O4. Catalysis Communications, 45:83-90.
  • Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM, 2007. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochimica Acta, 53: 400-426.
  • Qiao Y, Li, CM, 2011. Nanostructured catalysts in fuel cells. Journal of Materials Chemistry, 21: 4027-4036.
  • Rajeshkhanna G, Umeshbabu E, Ranga Rao G, 2017. Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. Journal of Colloid and Interface Science, 487:20-30.
  • Ramli ZAC, Kamarudin SK, 2018. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: a Review. Nanoscale Research Letters, 13: 410.
  • Salavati-Niasari M, Mir N, Davar F, 2009. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids, 70: 847-852.
  • Shinde VR, Mahadik SB, Gujar TP, Lokhande CD, 2006. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science, 252: 7487-7492.
  • Uddin MK, Baig U, 2019. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. Journal of Cleaner Production, 211: 1141-1153.
  • Urhan BK, Demir Ü, 2019. Electrochemical fabrication of Ni or Ni(OH)2@Ni nanoparticle-decorated reduced graphene oxide for supercapacitor applications. Electrochimica Acta, 302: 109-118.
  • Vennela AB, Mangalaraj D, Muthukumarasamy N, Agilan S, Hemalatha KV, 2019. Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. International Journal of Electrochemical Science, 14: 3535 – 3552.
  • Waszczuk P, Kim HS, Tong YY, Wieckowski A, Solla-Gullón J, Montiel V, Aldaz A, 2001. Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. Journal of Catalysis, Volume 203, 1-6.
  • Yetim NK, 2021. Hydrothermal synthesis of Co3O4 with different morphology: Investigation of magnetic and electrochemical properties. Journal of Molecular Structure, 1226: 129414.
  • Yuan Z, Zhao J, Meng F, Qin W, Chen Y, Yang M, Zhao Y, 2019. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. Journal of Alloys and Compounds, 793: 24-30.
  • Yuda A, Ashok A, Kumar A, 2020. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catalysis Reviews - Science and Engineering, https://doi.org/10.1080/01614940.2020.1802811.
  • Zhang X, Zhong H, Xu L, Wang S, Chi H, Pan Q, Zhang G, 2018. Fabrication of Co3O4/PEI-GO composites for gas-sensing applications at room temperature. Materials Research Bulletin, 102: 108-115.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Bingül Kurt Urhan 0000-0002-8742-6789

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 10 Şubat 2021
Kabul Tarihi 23 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kurt Urhan, B. (2021). Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı. Journal of the Institute of Science and Technology, 11(2), 1354-1361. https://doi.org/10.21597/jist.878119
AMA Kurt Urhan B. Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2021;11(2):1354-1361. doi:10.21597/jist.878119
Chicago Kurt Urhan, Bingül. “Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı”. Journal of the Institute of Science and Technology 11, sy. 2 (Haziran 2021): 1354-61. https://doi.org/10.21597/jist.878119.
EndNote Kurt Urhan B (01 Haziran 2021) Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı. Journal of the Institute of Science and Technology 11 2 1354–1361.
IEEE B. Kurt Urhan, “Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 2, ss. 1354–1361, 2021, doi: 10.21597/jist.878119.
ISNAD Kurt Urhan, Bingül. “Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı”. Journal of the Institute of Science and Technology 11/2 (Haziran 2021), 1354-1361. https://doi.org/10.21597/jist.878119.
JAMA Kurt Urhan B. Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1354–1361.
MLA Kurt Urhan, Bingül. “Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı”. Journal of the Institute of Science and Technology, c. 11, sy. 2, 2021, ss. 1354-61, doi:10.21597/jist.878119.
Vancouver Kurt Urhan B. Co3O4/Ni Köpük Nanokompozitlerinin Doğrudan Metanol Yakıt Hücresinde Elektrot Malzemesi Olarak Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1354-61.