Araştırma Makalesi
BibTex RIS Kaynak Göster

Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative

Yıl 2021, , 2916 - 2925, 15.12.2021
https://doi.org/10.21597/jist.912690

Öz

Fluorescent dyes are optical devices which are commonly used in medical and technical applications. Graphene-oxide, on the other hand, is a unique structure in nanotechnology with its oxygen-containing functional groups, high solubility, optical, electronic and thermal properties. Here we report photophysical properties of a newly synthesized fluorescent aza-BODIPY dye and dye-graphene oxide (GO) composite in aqueous media. Quantum yields were determined in both ethanol and chloroform medias according to Perker-Rees equation. Also quenching mechanism was discussed in the light of Stern-Volmer parameters.

Destekleyen Kurum

Atatürk University

Proje Numarası

FHD-2017-6181

Kaynakça

  • Aydın BM, Acar M, Arık M, Onganer Y, 2009. The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 81:156-160.
  • Balapanuru J, Yang JX, Xiao S, Bao Q, Jahan M, Polavarapu L, Loh KP, 2010. A graphene oxide–organic dye ionic complex with dna‐sensing and optical‐limiting properties. Angewandte Chemie International Edition, 49(37):6549-6553.
  • Brouwer AM, 2011. Standards for photoluminescence quantum yield measurements in solution. Pure and Applied Chemistry, 83(12):2213-2228.
  • Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X, 2020. Aza-BODIPY-Based nanomedicines in cancer phototheranostics. ACS Applied Materials & Interfaces, 12:26914-26925.
  • Dimiev AM, Tour JM, 2014. Mechanism of graphene oxide formation. ACS nano, 8(3):3060-3068.
  • Dreyer DR, Park S, Bielawski CW, Ruoff RS, 2010. The chemistry of graphene oxide. Chemical Society Reviews, 39(1):228-240.
  • Gorman A, Killoran J, O'Shea C, Kenna T, Gallagher WM, O'Shea DF, 2004. In vitro demonstration of the heavy-atom effect for photodynamictherapy. Journal of the American Chemical Society, 126(34):10619-10631.
  • Hall MJ, McDonnell SO, Killoran J, O'Shea DF, 2005. A modular synthesis of unsymmetrical tetraarylazadipyrromethenes. The Journal of Organic Chemistry, 70(14):5571-5578.
  • Killoran J, Allen L, Gallagher JF, Gallagher WM, Donal FO, 2002. Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chemical Communications, 17:1862-1863.
  • Lakowicz JR, 1983. Principles of Fluorescence Spectroscopy. Plenium Press, pp. 278-285, New York-USA
  • Li L, Li W, Wang L, Tang H, Cao D, Ran X, 2020. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sensors & Actuators: B. Chemical 312, 127953:1-10.
  • Loudet A, Burgess K, 2007. Bodipy dyes and their derivatives: syntheses and spectroscopic properties. Chemical Reviews, 107(11):4891-4932.
  • Lu H, Mack J, Yang Y, Shen Z, 2014. Structural modification strategies for the rational design of red/NIR region bodipys. Chemical Society Reviews, 43(13):4778-4823.
  • Narayanan R, Deepa M, Srivastava AK, 2012. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance. Physical Chemistry Chemical Physics, 14(2):767-778.
  • Petersen S, Glyvradal M, Boggild P, Hu W, Feidenhans'l R, Laursen BW, 2012. Graphene oxide as a monoatomic blocking layer. ACS Nano, 6(9):8022-8029.
  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S, 2011. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 361(1):270-277.
  • Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Ruoff RS, 2012. Highly conductive and porous activated reduced graphene oxide films for highpower supercapacitors. Nano Letters, 12(4):1806-1812.
  • Zhao Y, Li K, He Z, Zhang Y, Zhao Y, Zhang H, Miao Z, 2016. Investigation on fluorescence quenching mechanism of perylene diimide dyes by graphene oxide. Molecules, 21, (1642):1-7.
  • Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS, 2011. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 5(4):3333-3338.
  • Ziessel R, Goze C, Ulrich G, 2007. Design and synthesis of alkyne-substituted boron in dipyrromethene frameworks. Synthesis, 06:936-949.
  • Zuo J, Pan H, Zhang Y, Chen Y, Wang H, Ren XK, Chen Z, 2020. Near-infrared fluorescent amphiphilic Aza-BODIPY dye: Synthesis, solvatochromic properties, and selective detection of Cu2+. Dyes and Pigments, 183,108714:1-7.
Yıl 2021, , 2916 - 2925, 15.12.2021
https://doi.org/10.21597/jist.912690

Öz

Proje Numarası

FHD-2017-6181

Kaynakça

  • Aydın BM, Acar M, Arık M, Onganer Y, 2009. The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 81:156-160.
  • Balapanuru J, Yang JX, Xiao S, Bao Q, Jahan M, Polavarapu L, Loh KP, 2010. A graphene oxide–organic dye ionic complex with dna‐sensing and optical‐limiting properties. Angewandte Chemie International Edition, 49(37):6549-6553.
  • Brouwer AM, 2011. Standards for photoluminescence quantum yield measurements in solution. Pure and Applied Chemistry, 83(12):2213-2228.
  • Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X, 2020. Aza-BODIPY-Based nanomedicines in cancer phototheranostics. ACS Applied Materials & Interfaces, 12:26914-26925.
  • Dimiev AM, Tour JM, 2014. Mechanism of graphene oxide formation. ACS nano, 8(3):3060-3068.
  • Dreyer DR, Park S, Bielawski CW, Ruoff RS, 2010. The chemistry of graphene oxide. Chemical Society Reviews, 39(1):228-240.
  • Gorman A, Killoran J, O'Shea C, Kenna T, Gallagher WM, O'Shea DF, 2004. In vitro demonstration of the heavy-atom effect for photodynamictherapy. Journal of the American Chemical Society, 126(34):10619-10631.
  • Hall MJ, McDonnell SO, Killoran J, O'Shea DF, 2005. A modular synthesis of unsymmetrical tetraarylazadipyrromethenes. The Journal of Organic Chemistry, 70(14):5571-5578.
  • Killoran J, Allen L, Gallagher JF, Gallagher WM, Donal FO, 2002. Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chemical Communications, 17:1862-1863.
  • Lakowicz JR, 1983. Principles of Fluorescence Spectroscopy. Plenium Press, pp. 278-285, New York-USA
  • Li L, Li W, Wang L, Tang H, Cao D, Ran X, 2020. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sensors & Actuators: B. Chemical 312, 127953:1-10.
  • Loudet A, Burgess K, 2007. Bodipy dyes and their derivatives: syntheses and spectroscopic properties. Chemical Reviews, 107(11):4891-4932.
  • Lu H, Mack J, Yang Y, Shen Z, 2014. Structural modification strategies for the rational design of red/NIR region bodipys. Chemical Society Reviews, 43(13):4778-4823.
  • Narayanan R, Deepa M, Srivastava AK, 2012. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance. Physical Chemistry Chemical Physics, 14(2):767-778.
  • Petersen S, Glyvradal M, Boggild P, Hu W, Feidenhans'l R, Laursen BW, 2012. Graphene oxide as a monoatomic blocking layer. ACS Nano, 6(9):8022-8029.
  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S, 2011. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 361(1):270-277.
  • Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Ruoff RS, 2012. Highly conductive and porous activated reduced graphene oxide films for highpower supercapacitors. Nano Letters, 12(4):1806-1812.
  • Zhao Y, Li K, He Z, Zhang Y, Zhao Y, Zhang H, Miao Z, 2016. Investigation on fluorescence quenching mechanism of perylene diimide dyes by graphene oxide. Molecules, 21, (1642):1-7.
  • Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS, 2011. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 5(4):3333-3338.
  • Ziessel R, Goze C, Ulrich G, 2007. Design and synthesis of alkyne-substituted boron in dipyrromethene frameworks. Synthesis, 06:936-949.
  • Zuo J, Pan H, Zhang Y, Chen Y, Wang H, Ren XK, Chen Z, 2020. Near-infrared fluorescent amphiphilic Aza-BODIPY dye: Synthesis, solvatochromic properties, and selective detection of Cu2+. Dyes and Pigments, 183,108714:1-7.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Mustafa Arık 0000-0001-5788-4466

Salih Serhat Başar 0000-0002-0615-2895

Demet Demirci Gültekin 0000-0003-0773-6048

Serkan Şen 0000-0001-6361-7137

Proje Numarası FHD-2017-6181
Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 9 Nisan 2021
Kabul Tarihi 16 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Arık, M., Başar, S. S., Gültekin, D. D., Şen, S. (2021). Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative. Journal of the Institute of Science and Technology, 11(4), 2916-2925. https://doi.org/10.21597/jist.912690
AMA Arık M, Başar SS, Gültekin DD, Şen S. Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):2916-2925. doi:10.21597/jist.912690
Chicago Arık, Mustafa, Salih Serhat Başar, Demet Demirci Gültekin, ve Serkan Şen. “Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 2916-25. https://doi.org/10.21597/jist.912690.
EndNote Arık M, Başar SS, Gültekin DD, Şen S (01 Aralık 2021) Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative. Journal of the Institute of Science and Technology 11 4 2916–2925.
IEEE M. Arık, S. S. Başar, D. D. Gültekin, ve S. Şen, “Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 2916–2925, 2021, doi: 10.21597/jist.912690.
ISNAD Arık, Mustafa vd. “Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 2916-2925. https://doi.org/10.21597/jist.912690.
JAMA Arık M, Başar SS, Gültekin DD, Şen S. Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2916–2925.
MLA Arık, Mustafa vd. “Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 2916-25, doi:10.21597/jist.912690.
Vancouver Arık M, Başar SS, Gültekin DD, Şen S. Bimolecular Interactions Between Graphene Oxide and a New Aza-BODIPY Derivative. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2916-25.