Research Article
BibTex RIS Cite

GEANT4 Simulation of Recoils Production with Proton-Silicon Interactions with 1- 100 MeV Energy

Year 2021, , 2746 - 2757, 15.12.2021
https://doi.org/10.21597/jist.924356

Abstract

Radiation flux (proton, neutron, gamma, electron, ion, etc.) on a silicon material can cause mesh damage in the form of a point or cluster. The amount and shape of this damage varies depending on the type and energy of the incoming radiation. The complete description of primary knock-on atoms (PKA’s) produced by the nuclear elastic scattering of the proton with silicon atoms and nuclear recoil atoms generated by their nuclear inelastic interactions is of great importance for quantitative determination of radiation damage in silicon. In this study, nuclear interactions cross sections of protons in the energy range of 1-100 MeV sent on silicon, nuclear recoil atoms and PKA’s were analyzed by using GEANT4 simulation method and the results were compared with the literature.

References

  • Agostinelli S ve ark. 2003. Geant4—a simulation toolkit: Nuclear Instruments and Methods in Physics Research A, 506:250–303.
  • Akkerman A, Barak J, Chadwick MB, Levinson J, Murat M, Lifshitz Y 2001. Updated NIEL calculations for estimating the damage induced by particles and -rays in Si and GaAs. Radiation Physics and Chemistry, 62:301–310.
  • Allison ve ark., 2016. Recent developments in GEANT4: Nuclear Instruments and Methods in Physics Research A, 835: 186-225.
  • Alurraldel M, Victoria M, Caro A, Gavillet D, 1991. Nuclear and Damage Effects in Si Produced by Irradiations with Medium Energy Protons. IEE Transaction on Nuclear Science, 38(6):1210-1215 Bortoletto D, 2015. How and why silicon sensors are becoming more and more intelligent?. Journal of Instrumentation JINST, 10 C08016: 1-13
  • Brun R, Rademakers F, 1997. ROOT - An Object Oriented Data Analysis Framework. Nuclear Instrument and Methods in Physics Research A, 389: 81-86
  • Caron P, Inguimbert C, Artola L, 2019. Physical Mechanisms of Proton-Induced Single-Event Upset in Integrated Memory Devices. IEE Transaction on Nuclear Science, 66(7):1404-1409.
  • Dale CJ, Chen L, McNulty PJ, Marshall PW, Burke EA, 1994. A Comparison of Monte Carlo and Analytic Treatments of Displacement Damage in Si Microvolumes. IEE Transaction on Nuclear Science, 41(6):1974-1983
  • Dodd PE, 2005. Physics-Based Simulation of Single-Event Effects. IEE Transaction on Device And Materials Reliability, 5(3):343-357.
  • Donegani EM, 2017. Energy-Dependent Proton Damage in Silicon. an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universität Hamburg, (unpublished) Ph.D thesis, 203p.
  • Gao F, Chen N, Hernandez-Rivera E, Huang D, LeVan PD, 2017. Displacement damage and predicted non-ionizing energy loss in GaAs. Journal of Applied Physics, 121, 095104
  • Ivantchenko AV, Ivanchenko VN, Molina JMQ, Incerti SL, 2012. Geant4 hadronic physics for space radiation environment. International Journal of Radiation Biology 88:1-2: 171-175.
  • Iwamoto Y, ve ark. 2018. Radiation Damage Calculation in PHITS and Benchmarking Experiment for Cryogenic-Sample High-Energy Proton Irradiation: Beam Instruments and Interactions ISBN: 978-3-95450-202-8 doi:10.18429/JACoW-HB2018-TUP2WE03
  • Jun I, Xapsos MA, Messenger SR, Burke EA, Walters RJ, Summers GP, Jordan T, 2003. Proton Nonionizing Energy Loss (NIEL) for Device Applications. IEE Transaction on Nuclear Science, 50(6):1924-1928.
  • Li Z, 2008. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC. Journal of Instrumentation, 4: P03011.
  • Luneville L, Sublet JC, Simeone D, 2017. Impact of nuclear transmutations on the primary damage production: the example of Ni based steels. Journal of Nuclear Materials, 505:262-266.
  • Messenger SR, Burke EA, Summers GP, Walters RJ, 2004. Limits to the Application of NIEL for Damage Correlation. IEE Transaction on Nuclear Science, 51(6):3201-3206.
  • Moll M, 2018. Displacement Damage in Silicon Detectors for High Energy Physics. IEE Transaction on Nuclear Science, 65(8):1561-1582.
  • Nordlund K, Zinkle SJ, Sand AE, Granberg F, Averback RS, Stoller R, Suzudo T, Malerba L, Banhart F, Weber WJ, Willaime F, Sergei L, Dudarev SL, Simeone D, 2018. Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications, (9):1084.
  • Perl J, 2003. DAWN GEANT4 olay görüntüleme aracı, https://conferences.fnal.gov/g4tutorial /g4cd/Documentation/Visualization/G4DAWNTutorial/G4DAWNTutorial.html, (erişim tarihi 14 Ekim 2003).
  • Rayaprolu R, Möller S, Linsmeier CH, Spellerberg S, 2016. Simulation of neutron irradiation damage in tungsten using higher energy protons. Nuclear Materials and Energy, 9:29-35
  • Rong-Hua L, ve ark., 2015. Phonon contribution to nonionizing energy loss in silicon detectors. Chinese Physics C, 39(6): 066004 1-4.
  • Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S, 1999. Comparison of Radiation Damage in Silicon Induced by Proton and Neutron Irradiation. IEE Transaction on Nuclear Science, 46(5):1310-1313.
  • Truscott P ve ark., 2004. Assessment of Neutron- and Proton-Induced Nuclear Interaction and Ionization Models in Geant4 for Simulating Single Event Effects. IEE Transaction on Nuclear Science, 51(6):3369-3374.
  • Virmontois C, Girard S, 2010. Displacement Damage Effects Due to Neutron and Proton Irradiations on CMOS Image Sensors Manufactured in Deep Submicron Technology. IEE Transaction on Nuclear Science, 57(6):3101-3108.

1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi

Year 2021, , 2746 - 2757, 15.12.2021
https://doi.org/10.21597/jist.924356

Abstract

 Bir silikon malzeme üzerine gelen radyasyon akısı (proton, nötron, gamma, elektron, ion vb.) noktasal veya küme şeklinde bir örgü hasarına sebep olabilmektedir. Bu hasarın miktarı ve biçimi, gelen radyasyonun türüne ve enerjisine bağlı olarak değişir. Protonun, silikon atomlarıyla nükleer esnek saçılması sonucu üretilen birincil çarpışma atomlarının (primary knock on atom, PKA) ve nükleer esnek olmayan etkileşmeleriyle açığa çıkan nükleer geritepen atomların eksiksiz olarak tanımlanması, silikondaki radyasyon hasarının nicel olarak belirlenmesi açısından büyük öneme taşır. Bu çalışmada, silikon üzerine gönderilen 1-100 MeV enerji aralığındaki protonların, nükleer etkileşme tesir kesitleri, nükleer geritepen atomlar ve PKA’lar GEANT4 benzetişim yöntemiyle analiz edilmiş ve sonuçların literatürle karşılaştırmaları yapılmıştır.

References

  • Agostinelli S ve ark. 2003. Geant4—a simulation toolkit: Nuclear Instruments and Methods in Physics Research A, 506:250–303.
  • Akkerman A, Barak J, Chadwick MB, Levinson J, Murat M, Lifshitz Y 2001. Updated NIEL calculations for estimating the damage induced by particles and -rays in Si and GaAs. Radiation Physics and Chemistry, 62:301–310.
  • Allison ve ark., 2016. Recent developments in GEANT4: Nuclear Instruments and Methods in Physics Research A, 835: 186-225.
  • Alurraldel M, Victoria M, Caro A, Gavillet D, 1991. Nuclear and Damage Effects in Si Produced by Irradiations with Medium Energy Protons. IEE Transaction on Nuclear Science, 38(6):1210-1215 Bortoletto D, 2015. How and why silicon sensors are becoming more and more intelligent?. Journal of Instrumentation JINST, 10 C08016: 1-13
  • Brun R, Rademakers F, 1997. ROOT - An Object Oriented Data Analysis Framework. Nuclear Instrument and Methods in Physics Research A, 389: 81-86
  • Caron P, Inguimbert C, Artola L, 2019. Physical Mechanisms of Proton-Induced Single-Event Upset in Integrated Memory Devices. IEE Transaction on Nuclear Science, 66(7):1404-1409.
  • Dale CJ, Chen L, McNulty PJ, Marshall PW, Burke EA, 1994. A Comparison of Monte Carlo and Analytic Treatments of Displacement Damage in Si Microvolumes. IEE Transaction on Nuclear Science, 41(6):1974-1983
  • Dodd PE, 2005. Physics-Based Simulation of Single-Event Effects. IEE Transaction on Device And Materials Reliability, 5(3):343-357.
  • Donegani EM, 2017. Energy-Dependent Proton Damage in Silicon. an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universität Hamburg, (unpublished) Ph.D thesis, 203p.
  • Gao F, Chen N, Hernandez-Rivera E, Huang D, LeVan PD, 2017. Displacement damage and predicted non-ionizing energy loss in GaAs. Journal of Applied Physics, 121, 095104
  • Ivantchenko AV, Ivanchenko VN, Molina JMQ, Incerti SL, 2012. Geant4 hadronic physics for space radiation environment. International Journal of Radiation Biology 88:1-2: 171-175.
  • Iwamoto Y, ve ark. 2018. Radiation Damage Calculation in PHITS and Benchmarking Experiment for Cryogenic-Sample High-Energy Proton Irradiation: Beam Instruments and Interactions ISBN: 978-3-95450-202-8 doi:10.18429/JACoW-HB2018-TUP2WE03
  • Jun I, Xapsos MA, Messenger SR, Burke EA, Walters RJ, Summers GP, Jordan T, 2003. Proton Nonionizing Energy Loss (NIEL) for Device Applications. IEE Transaction on Nuclear Science, 50(6):1924-1928.
  • Li Z, 2008. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC. Journal of Instrumentation, 4: P03011.
  • Luneville L, Sublet JC, Simeone D, 2017. Impact of nuclear transmutations on the primary damage production: the example of Ni based steels. Journal of Nuclear Materials, 505:262-266.
  • Messenger SR, Burke EA, Summers GP, Walters RJ, 2004. Limits to the Application of NIEL for Damage Correlation. IEE Transaction on Nuclear Science, 51(6):3201-3206.
  • Moll M, 2018. Displacement Damage in Silicon Detectors for High Energy Physics. IEE Transaction on Nuclear Science, 65(8):1561-1582.
  • Nordlund K, Zinkle SJ, Sand AE, Granberg F, Averback RS, Stoller R, Suzudo T, Malerba L, Banhart F, Weber WJ, Willaime F, Sergei L, Dudarev SL, Simeone D, 2018. Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications, (9):1084.
  • Perl J, 2003. DAWN GEANT4 olay görüntüleme aracı, https://conferences.fnal.gov/g4tutorial /g4cd/Documentation/Visualization/G4DAWNTutorial/G4DAWNTutorial.html, (erişim tarihi 14 Ekim 2003).
  • Rayaprolu R, Möller S, Linsmeier CH, Spellerberg S, 2016. Simulation of neutron irradiation damage in tungsten using higher energy protons. Nuclear Materials and Energy, 9:29-35
  • Rong-Hua L, ve ark., 2015. Phonon contribution to nonionizing energy loss in silicon detectors. Chinese Physics C, 39(6): 066004 1-4.
  • Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S, 1999. Comparison of Radiation Damage in Silicon Induced by Proton and Neutron Irradiation. IEE Transaction on Nuclear Science, 46(5):1310-1313.
  • Truscott P ve ark., 2004. Assessment of Neutron- and Proton-Induced Nuclear Interaction and Ionization Models in Geant4 for Simulating Single Event Effects. IEE Transaction on Nuclear Science, 51(6):3369-3374.
  • Virmontois C, Girard S, 2010. Displacement Damage Effects Due to Neutron and Proton Irradiations on CMOS Image Sensors Manufactured in Deep Submicron Technology. IEE Transaction on Nuclear Science, 57(6):3101-3108.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Adnan Kılıç 0000-0003-0983-7504

Publication Date December 15, 2021
Submission Date April 21, 2021
Acceptance Date June 19, 2021
Published in Issue Year 2021

Cite

APA Kılıç, A. (2021). 1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi. Journal of the Institute of Science and Technology, 11(4), 2746-2757. https://doi.org/10.21597/jist.924356
AMA Kılıç A. 1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi. J. Inst. Sci. and Tech. December 2021;11(4):2746-2757. doi:10.21597/jist.924356
Chicago Kılıç, Adnan. “1-100 MeV Enerjili Proton-Silikon Etkileşmeleri Ile Geritepen Üretiminin GEANT4 Benzetişimi”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2746-57. https://doi.org/10.21597/jist.924356.
EndNote Kılıç A (December 1, 2021) 1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi. Journal of the Institute of Science and Technology 11 4 2746–2757.
IEEE A. Kılıç, “1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2746–2757, 2021, doi: 10.21597/jist.924356.
ISNAD Kılıç, Adnan. “1-100 MeV Enerjili Proton-Silikon Etkileşmeleri Ile Geritepen Üretiminin GEANT4 Benzetişimi”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2746-2757. https://doi.org/10.21597/jist.924356.
JAMA Kılıç A. 1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi. J. Inst. Sci. and Tech. 2021;11:2746–2757.
MLA Kılıç, Adnan. “1-100 MeV Enerjili Proton-Silikon Etkileşmeleri Ile Geritepen Üretiminin GEANT4 Benzetişimi”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2746-57, doi:10.21597/jist.924356.
Vancouver Kılıç A. 1-100 MeV Enerjili Proton-Silikon Etkileşmeleri ile Geritepen Üretiminin GEANT4 Benzetişimi. J. Inst. Sci. and Tech. 2021;11(4):2746-57.