Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Iron Oxide (γ-Fe2O3) Nanoparticles Using Antiviral M. Parviflora L (Mallow) Plant Growing in the Aegean Region and Investigation of Antibacterial Properties

Yıl 2021, , 2937 - 2946, 15.12.2021
https://doi.org/10.21597/jist.938465

Öz

Maghemite (γ-Fe2O3) among magnetic nanomaterials in recent years has gained an important research field in the fields of biology, chemistry, metallurgy due to its natural biocompatible nature, oxidation stability and good magnetic properties. It has applications in areas such as cancer therapy, gene research, and drug chemistry. Extremely promising due to its non-toxic and environmentally friendly behavior, iron oxide in nanoscale has been synthesized via the highly applied green synthesis recently. In this study, nanoscale maghemite (γ-Fe2O3) was synthesized from hexahydrate ferric chloride (FeCl3.6H2O) using M. parviflora L (mallow) leaf extract. The synthesis of nano iron oxides obtained was characterized by using UV-Vis, FTIR, XRD, FESEM, EDX. The antimicrobial activity of γ-Fe2O3 nanoparticles was achieved by disk diffusion method.

Kaynakça

  • Ashaduzzaman M, Hossen Bhuiyan S, Miah MY, Shujit Chandra P, Das Aka T, Saha O, Rahaman M, Sharif JI, Habiba O, 2020. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8): 4603
  • Baytop T, 1994. Türkçe Bitki Adları Sözlüğü. Atatürk Kültür, Dil ve Tarih Yüksek Kurumu, Türk Dil Kurumu Yayınları: 578, Türk Tarih Kurumu Basımevi. Ankara-Türkiye
  • Benelli G, Lukehart CM, 2017. Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. Journal of Cluster Science, 28(1): 1-2.
  • Biswas PS, Debnath TK, Saha PK, Chowdury AV, Shaw U, 1999. Chemical and pharmacological evaluation of different Ayurvedic preparations of iron. Journal of Ethnopharmacology, 65: 149–156.
  • Dale L, 2005. Synthesis, properties, and applications of iron nanoparticles. Small Nano Micro, 1: 482–501.
  • Devi HS, Boda A, Ashraf Shah M, Parveen S, Wani AH, 2019. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing Synthesis, 8: 38–45.
  • Dülger B, Gönüz A, 2004. Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian Journal Plant Science, 3: 104-107.
  • Fenercioğlu ET, Tuzlacı E, 1998. Şile (İstanbul) yöresinde geleneksel halk ilacı olarak kullanılan bitkileri, Proceedings of XIIth International Smyposium on Plant Originated Crude Drugs, Ankara, Mayıs, 1998: 243-248.
  • Fernandez-Remolar DC, 2014. Iron oxides, hydroxides and oxy-hydroxides. Encylopedia of Astrobiology, pp. 1268-1270, France.
  • Ghandoor HE, Zidan HM, Khalil MH, Ismail MIM, 2012. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. International Journal of Electrochemical Science, 7:5734-45.
  • Gunalan S, Sivaraj R, Rajendran V, 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science, 22 (6): 693-700.
  • Hu JS, Zhong LS, Song WG, Wan LJ, 2008. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Advanced Materials, 20: 2977–2982.
  • Khadeeja P, Banse V, Ledwani L, 2016. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings. 1724: 020048.
  • Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ, 2013. The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4): 240-248.
  • Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, GZ, 2013. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8): 595.
  • Lu J, Jiao X, Chen D, Gu W, 2009. Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates. Journal of Physical Chemistry C, 113: 4012–4017.
  • Mittal AK, Chisti Y, Banerjee UC, 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31 (2): 346–356.
  • Pyle BH, Broadaway SC, Mcfeters GA, 1999. Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and 76 solid-phase laser cytometry. Applied and Environmental Microbiology, 65(5): 1966- 1972.
  • Qingyi Z, Bai J, Li J, Xia L, Huang K, Li X, Zhou BA, 2015. Novel Insitu preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry A, 3: 4345– 4353.
  • Salam HA, Rajiv P, Kamaraj M, Jagadeeswaran P, Gunalan S, Sivaraj R, 2012. Plants: green route for nanoparticle synthesis. International Research Journal of Biological Science, 1: 85–90.
  • Singh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK, 2008. Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with gamma-Fe2O3 nanoparticles. Material Chemistry Physics, 112: 651–658.
  • Xinming Q, 2000. Nanomagnetism and magnetic nanoparticles for biomedical application. Journal Nano Research, 2: 191–198.

Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi

Yıl 2021, , 2937 - 2946, 15.12.2021
https://doi.org/10.21597/jist.938465

Öz

Son yıllarda manyetik nanomalzemeler arasında maghemit (γ-Fe2O3), doğal biyouyumlu doğası, oksidasyon kararlılığı ve iyi manyetik özellikleri nedeniyle biyoloji, kimya, metalurji alanlarında önemli bir araştırma alanı kazanmıştır. Kanser tedavisi, gen araştırmaları, ilaç kimyası gibi alanlarda uygulamaları mevcuttur. Toksin olmaması ve çevre dostu davranışı nedeniyle son derece umut verici olan son zamanlarda oldukça popüler yöntem olan yeşil sentez yoluyla nano boyutta demir oksit sentezlenmiştir. Bu çalışmada, nano ölçekli maghemit (γ-Fe2O3), antiviral özellikli M. parviflora L (ebegümeci) yaprağı ekstresi kullanılarak hekzahidrat ferrik klorürden (FeCl3.6H2O) sentezlenmiştir. Elde edilen nano demir oksitlerin sentezi UV-Vis, FTIR, XRD, FESEM, EDX kullanılarak karakterize edilmiştir. γ-Fe2O3 nanopartiküllerinin antimikrobiyal aktivitesi, disk difüzyon yöntemi ile gerçekleştirilmiştir.

Kaynakça

  • Ashaduzzaman M, Hossen Bhuiyan S, Miah MY, Shujit Chandra P, Das Aka T, Saha O, Rahaman M, Sharif JI, Habiba O, 2020. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8): 4603
  • Baytop T, 1994. Türkçe Bitki Adları Sözlüğü. Atatürk Kültür, Dil ve Tarih Yüksek Kurumu, Türk Dil Kurumu Yayınları: 578, Türk Tarih Kurumu Basımevi. Ankara-Türkiye
  • Benelli G, Lukehart CM, 2017. Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. Journal of Cluster Science, 28(1): 1-2.
  • Biswas PS, Debnath TK, Saha PK, Chowdury AV, Shaw U, 1999. Chemical and pharmacological evaluation of different Ayurvedic preparations of iron. Journal of Ethnopharmacology, 65: 149–156.
  • Dale L, 2005. Synthesis, properties, and applications of iron nanoparticles. Small Nano Micro, 1: 482–501.
  • Devi HS, Boda A, Ashraf Shah M, Parveen S, Wani AH, 2019. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing Synthesis, 8: 38–45.
  • Dülger B, Gönüz A, 2004. Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian Journal Plant Science, 3: 104-107.
  • Fenercioğlu ET, Tuzlacı E, 1998. Şile (İstanbul) yöresinde geleneksel halk ilacı olarak kullanılan bitkileri, Proceedings of XIIth International Smyposium on Plant Originated Crude Drugs, Ankara, Mayıs, 1998: 243-248.
  • Fernandez-Remolar DC, 2014. Iron oxides, hydroxides and oxy-hydroxides. Encylopedia of Astrobiology, pp. 1268-1270, France.
  • Ghandoor HE, Zidan HM, Khalil MH, Ismail MIM, 2012. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. International Journal of Electrochemical Science, 7:5734-45.
  • Gunalan S, Sivaraj R, Rajendran V, 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science, 22 (6): 693-700.
  • Hu JS, Zhong LS, Song WG, Wan LJ, 2008. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Advanced Materials, 20: 2977–2982.
  • Khadeeja P, Banse V, Ledwani L, 2016. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings. 1724: 020048.
  • Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ, 2013. The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4): 240-248.
  • Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, GZ, 2013. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8): 595.
  • Lu J, Jiao X, Chen D, Gu W, 2009. Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates. Journal of Physical Chemistry C, 113: 4012–4017.
  • Mittal AK, Chisti Y, Banerjee UC, 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31 (2): 346–356.
  • Pyle BH, Broadaway SC, Mcfeters GA, 1999. Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and 76 solid-phase laser cytometry. Applied and Environmental Microbiology, 65(5): 1966- 1972.
  • Qingyi Z, Bai J, Li J, Xia L, Huang K, Li X, Zhou BA, 2015. Novel Insitu preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry A, 3: 4345– 4353.
  • Salam HA, Rajiv P, Kamaraj M, Jagadeeswaran P, Gunalan S, Sivaraj R, 2012. Plants: green route for nanoparticle synthesis. International Research Journal of Biological Science, 1: 85–90.
  • Singh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK, 2008. Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with gamma-Fe2O3 nanoparticles. Material Chemistry Physics, 112: 651–658.
  • Xinming Q, 2000. Nanomagnetism and magnetic nanoparticles for biomedical application. Journal Nano Research, 2: 191–198.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Mine Sulak 0000-0003-1300-8661

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 17 Mayıs 2021
Kabul Tarihi 20 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Sulak, M. (2021). Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2937-2946. https://doi.org/10.21597/jist.938465
AMA Sulak M. Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):2937-2946. doi:10.21597/jist.938465
Chicago Sulak, Mine. “Ege Bölgesinde Yetişen Antiviral M. Parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir Oksit (γ-Fe2O3) Nanopartiküllerin Sentezi Ve Antibakteriyel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 2937-46. https://doi.org/10.21597/jist.938465.
EndNote Sulak M (01 Aralık 2021) Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 11 4 2937–2946.
IEEE M. Sulak, “Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 2937–2946, 2021, doi: 10.21597/jist.938465.
ISNAD Sulak, Mine. “Ege Bölgesinde Yetişen Antiviral M. Parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir Oksit (γ-Fe2O3) Nanopartiküllerin Sentezi Ve Antibakteriyel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 2937-2946. https://doi.org/10.21597/jist.938465.
JAMA Sulak M. Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2937–2946.
MLA Sulak, Mine. “Ege Bölgesinde Yetişen Antiviral M. Parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir Oksit (γ-Fe2O3) Nanopartiküllerin Sentezi Ve Antibakteriyel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 2937-46, doi:10.21597/jist.938465.
Vancouver Sulak M. Ege Bölgesinde Yetişen Antiviral M. parviflora L (Ebegümeci) Bitkisi Kullanılarak Demir oksit (γ-Fe2O3) Nanopartiküllerin Sentezi ve Antibakteriyel Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2937-46.