Derleme
BibTex RIS Kaynak Göster

Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı

Yıl 2021, , 3035 - 3054, 15.12.2021
https://doi.org/10.21597/jist.952748

Öz

Son zamanlarda, küresel ısınma, çevre kirliliği ve petrolün tükenme olasılığı gibi nedenlerden dolayı yenilenebilir kaynaklardan elde edilen malzemelerin kullanımı hakkında ciddi bir farkındalık oluştu. Kompozit malzemelerin doğal malzemelerden üretilmesi ile kompozitlerin üretiminden kullanım ömrünün sonuna kadar geçen süreçte karbon ayak izinde ve sera gazı salınımında önemli bir azalma meydana geldi. Ayrıca otomotiv sektöründe doğal kaynaklardan üretilen yeşil kompozitlerin kullanımı maliyetlerde azalma, araçta hafiflik ve yakıt tasarrufu sağladı. Yeşil kompozitler, sürdürülebilirlik, biyolojik olarak ayrışabilme, yüksek özgül mukavemet ve yüksek özgül modül gibi özellikleri nedeniyle yapı, havacılık, otomotiv, spor, ambalaj ve benzeri alanlarda hâlihazırda kullanılan kompozitlere iyi bir alternatif olarak karşımıza çıkmaktadır. Ancak, yeşil kompozitlerin matris ile doğal lifler arasında zayıf arayüzey bağının, yüksek nem emiliminin, düşük yanma dayanımının, düşük darbe dayanımının ve nispeten düşük dayanımın hala geliştirilmesi gerekmektedir. Çalışmada, araştırmacıların bu özellikleri geliştirmek için yapmış oldukları yayınlar irdelenmiş olup özet şeklinde verilmiştir. Literatürde yeşil kompozitin arayüzey bağını kuvvetlendirmek için uygulanan çeşitli kimyasal veya fiziksel iyileştirme işlemleri yapıldığı ve yanma dayanımı için katkı malzemeleri kullanıldığı görülmüştür. Yeşil kompozitlerin otomotiv parçalarında hali hazırda kullanımına BMW, Ford, Renault ve Volvo gibi tanınmış otomobil markalarının ön kapı konsolu (1.2–1.9 kg), arka kapı konsolu (0.8–1.6 kg) ve bagaj konsolu (1.5–2.5 kg) örnek olarak verilebilir. 2021'den itibaren, yeni otomobiller için AB genelinde ortalama salınım hedefi 95 g CO2 km-1 olacaktır. Bu salınım seviyesi ise, yaklaşık olarak 100 km’de 4.1 l benzin veya 3.6 l dizel yakıt tüketimine karşılık gelmektedir. Yeşil kompozitlerin kullanımı araçların yakıt tüketimini azaltarak CO2 salınımını önemli oranda düşürecektir.

Destekleyen Kurum

Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2018_FDK_3041

Kaynakça

  • Agrebi F, Hammami H, Asim M, Jawaid M, Kallel A, 2020. Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials, 54(7): 937–946.
  • Annandarajah C, 2020. Manufacture and Charecterization of Natural Fiber Biocomposites for Automative Applications. Doktora Tezi, IOWA State University, Ames Lowa, USA.
  • Aruan Efendy MG, Pickering KL, 2014. Comparison of Harakeke with Hemp Fibre as a Potential Reinforcement in Composites. Composites Part A: Applied Science and Manufacturing, 67: 259–67.
  • Asumani O, Paskaramoorthy R, 2021. Fatigue and Impact Strengths of Kenaf Fibre Reinforced Polypropylene Composites: Effects of Fibre Treatments, Advanced Composite Materials, 30(2): 103–15.
  • Avci A, Eker AA, Bodur MS, 2020. Effect of Coupling Agent and Alkali Treatment on Mechanical, Thermal, and Morphological Properties of Flax Fiber-Reinforced PLA Composites. Green Materials, In press.
  • Azizah AB, Rozman HD, Azniwati AA, Tay GS, 2020. The Effect of Filler Loading and Silane Treatment on Kenaf Core Reinforced Polyurethane Composites: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 28(2): 517–31.
  • Bajracharya RM, Bajwa DS, Bajwa SG, 2017. Mechanical Properties of Polylactic Acid Composites Reinforced with Cotton Gin Waste and Flax Fibers. Procedia Engineering, 200: 370–76.
  • Bax B, Müssig J, 2008. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Composites Science and Technology, 68(7-8): 1601-1607
  • Bledzki AK, Jaszkiewicz A, 2010. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres - A Comparative Study to PP. Composites Science and Technology, 70(12): 1687–96.
  • Bledzki AK, Jaszkiewicz A, Scherzer D, 2009. Mechanical Properties of PLA Composites with Man-Made Cellulose and Abaca Fibres. Composites Part A: Applied Science and Manufacturing, 40(4): 404–12.
  • Bodros E, Pillin I, Montrelay N, Baley C, 2007. Could Biopolymers Reinforced by Randomly Scattered Flax Fibre Be Used in Structural Applications? Composites Science and Technology, 67(3–4): 462–70.
  • Bodur MS, Sonmez HE, Bakkal M, 2017. An Investigation for the Effect of Recycled Matrix on the Properties of Textile Waste Cotton Fiber Reinforced (T-FRP) Composites. Polymer Composites, 38(7): 1231–40.
  • Bodur, Bodur MS, Bakkal M, Sonmez HE, 2016. The Effects of Different Chemical Treatment Methods on the Mechanical and Thermal Properties of Textile Fiber Reinforced Polymer Composites. Journal of Composite Materials, 50(27): 3817–30.
  • Callister W, Rethwisch D, 2014. Wiley Materials Science. John Wiley, New York, USA.
  • Cha YH, Kim KS, Kim DJ, 1998. Evaluation on the Fracture Toughness and Strength of Fiber Reinforced Brittle Matrix Composites. KSME International Journal, 12(3): 370–79.
  • Chaitanya S, Singh I, 2016. Processing of PLA_sisal Fiber Biocomposites Using Direct- and Extrusion-Injection Molding. Materials and Manufacturing Processes, 32(5), 468-474.
  • Couture A, Lebrun G, Laperrière L, 2016. Mechanical Properties of Polylactic Acid (PLA) Composites Reinforced with Unidirectional Flax and Flax-Paper Layers. Composite Structures, 154(1): 286-295.
  • Dhakal HN, Zhang ZY, Guthrie R, MacMullen J, Bennett N, 2013. Development of Flax/Carbon Fibre Hybrid Composites for Enhanced Properties. Carbohydrate Polymers, 96(1): 1–8.
  • Dicker MPM, Duckworth PF, Baker, Francois G, Hazzard MK, Weaver PM, 2014. Green Composites: A Review of Material Attributes and Complementary Applications. Composites Part A: Applied Science and Manufacturing, 56: 280–89.
  • Duigou AL, Bourmaud A, Davies P, Baley C, 2014. Long Term Immersion in Natural Seawater of Flax/PLA Biocomposite. Ocean Engineering, 90: 140–48.
  • EU Climate Action and the European Green Deal Climate Action.https://ec.europa.eu/clima/policies/eu-climate-action_en (Erişim Tarihi: 28.05.2021).
  • European Commission. Climate Action. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en (Erişim Tarihi: 28.05.2021).
  • Feng NL, Malingam SD, Razali N, Subramonian S, 2020. Alkali and Silane Treatments towards Exemplary Mechanical Properties of Kenaf and Pineapple Leaf Fibre-Reinforced Composites. Journal of Bionic Engineering, 17(2): 380–92.
  • Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M, 2016. Physical and Mechanical Properties of PLA Composites Reinforced by TiO2 Grafted Flax Fibers. Materials and Design, 106: 295–304.
  • Gamon G, Evon P, Rigal L, 2013. Twin-Screw Extrusion Impact on Natural Fibre Morphology and Material Properties in Poly(Lactic Acid) Based Biocomposites. Industrial Crops and Products, 46: 173–85.
  • Gassan J, 2002. A Study of Fibre and Interface Parameters Affecting the Fatigue Behaviour of Natural Fibre Composites. Composites - Part A: Applied Science and Manufacturing, 33(3): 369–74.
  • Georgiopoulos P, Christopoulos A, Koutsoumpis S, Kontou E, 2016. The Effect of Surface Treatment on the Performance of Flax/Biodegradable Composites. Composites Part B: Engineering, 106: 88–98.
  • Georgiopoulos P, Kontou E, Georgousis G, 2018. Effect of Silane Treatment Loading on the Flexural Properties of PLA/Flax Unidirectional Composites. Composites Communications, 10(1): 6-10.
  • Gholampour A, Ozbakkaloglu, 2020. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, Journal of Materials Science, 55(3): 829-892.
  • González AJ, Sanchez SE, Lagaron JM, Olsson RT, GamezPJ, Cabedo L, 2017. Assessing the Thermoformability of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Poly(Acid Lactic) Blends Compatibilized with Diisocyanates. Polymer Testing, 62: 235–45.
  • Hao LC, Sapuan SM, Hassan MR. Sheltami RM, 2018. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites Natural Fiber Reinforced Vinyl Polymer Composites. Woodhead Publishing, 27-70, Michigan, USA.
  • Hassan NE, Bai J, Dou DQ, 2019. Biopolymers; Definition, Classification and Applications. Egyptian Journal of Chemistry, 62(9): 1725–37.
  • Hatipoğlu A, 2020. Preparation And Characterization Of Poly (Lactic Acid) / Barıte Composites. Yüksek Lisans Tezi, Alparslan Türkeş Science And Technology University, Adana, Turkey.
  • Hong CK, Kim N, Kang SL, Nah C, Lee YS, Cho BH, Ahn JH, 2008. Mechanical Properties of Maleic Anhydride Treated Jute Fibre/Polypropyiene Composites. Plastics, Rubber and Composites, 37(7): 325–30.
  • Hoque MB, Hossain MS, Nahid AM, Bari S, Khan RA, 2018. Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. Nano Hybrids and Composites, 21: 31–42.
  • Hu R, Lim JK, 2007. Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites. Journal of Composite Materials, 41(13): 1655–69.
  • Huda MK and Widiastuti I, 2021. Natural Fiber Reinforced Polymer in Automotive Application: A Systematic Literature Review. Journal of Physics: Conference Series, 1808(1): 012015.
  • Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M, 2008. Properties and Performance of Natural-Fibre Composites, Woodhead Publishing, 221–26, Michigan, USA.
  • Jain J, Sinha S, Jain S, 2019. Compendious Characterization of Chemically Treated Natural Fiber from Pineapple Leaves for Reinforcement in Polymer Composites. Journal of Natural Fibers, 18(6): 845–56.
  • Karmaker AC, Shneider jP, 1996. Mechanical Performance of Short Jute Fibre Reinforced Polypropylene. Journal of Materials Science Letters, 15(3): 201–2.
  • Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N, 2019. An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Materials Today: Proceedings, 27: 2828–34.
  • Keck S and Fulland M, 2016. Effect of Fibre Volume Fraction and Fibre Direction on Crack Paths in Flax Fibre-Reinforced Composites. Engineering Fracture Mechanics, 167: 201–9.
  • Ko HU, Kim JW, Kim HC, Zhai L, Kim J, 2020. Esterified PVA-Lignin Resin by Maleic Acid Applicable for Natural Fiber Reinforced Composites. Journal of Applied Polymer Science, 137(26): 1–9.
  • Koronis G, Silva A, 2018. Green Composites for Automotive Applications.Woodhead Publishing, Michigan, USA.
  • Koronis G, Silva A, Fontul M, 2013. Green Composites: A Review of Adequate Materials for Automotive Applications. Composites Part B: Engineering, 44(1):120-127.
  • Kumar S, Samal SK, Mohanty S, Nayak SK, 2018. Recent Development of Biobased Epoxy Resins: A Review. Polymer - Plastics Technology and Engineering 57(3): 133–55.
  • Liang Z, Wu H, Liu R, Wu C, 2021. Preparation of Long Sisal Fiber-Reinforced Polylactic Acid Biocomposites with Highly Improved Mechanical Performance. Polymers 13(7): 1124.
  • Liu B, Jinwen Z, Gabriel G, Linshu L, 2012. Performance Enhancement of Poly (Lactic Acid)/ Soy Protein Concentrate Blends by promoting formation of network structure. Green materials, 1(3): 176-185.
  • Lotfi A, Li H, Dao DV, Prusty G, 2021. Natural Fiber–Reinforced Composites: A Review on Material, Manufacturing, and Machinability. Journal of Thermoplastic Composite Materials, 34(2): 238–84.
  • Maichin P, Suwan T, Jitsangiam P, Chindaprasirt P, and Fan M, 2020. Effect of Self-Treatment Process on Properties of Natural Fiber-Reinforced Geopolymer Composites. Materials and Manufacturing Processes, 35(10): 1120–28.
  • Mann GS, Singh LP, Kumar P, Singh S, 2020. Green Composites: A Review of Processing Technologies and Recent Applications. Journal of Thermoplastic Composite Materials, 33(8): 1145–71.
  • Mantia FPL, Morreale M, 2011. Green Composites: A Brief Review. Composites Part A: Applied Science and Manufacturing, 42(6): 579–88.
  • Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS, 2015. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015(1):1-15.
  • Mohanty AK, Drzal LT, Group F, 2005. Natural Fibers, Biopolymers, And Biocomposites, Taylor Francis, New York, USA.
  • Najeeb MI, Sultan MTH, Andou Y, Shah AUM, Eksiler K, Jawaid M, Ariffin AH, 2020. Characterization of Silane Treated Malaysian Yankee Pineapple AC6 Leaf Fiber (PALF) towards Industrial Applications. Journal of Materials Research and Technology, 9(3): 3128–39.
  • Nassiopoulos E, Njuguna J, 2015. Thermo-Mechanical Performance of Poly(Lactic Acid)/Flax Fibre-Reinforced Biocomposites. Materials and Design, 66(PB): 473–85.
  • O’Donnell A, Dweib MA, Wool RP, 2004. Natural Fiber Composites with Plant Oil-Based Resin. Composites Science and Technology, 64(9), 1135-1145.
  • Oksman K, Skrifvars M, Selin JF, 2003. Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Composites Science and Technology, 63(9): 1317-1324.
  • Patil A, Patel A, Purohit R, 2017. An Overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings 4(2): 3807–15.
  • Plackett D, Andersen TL, Pedersen WB, Nielsen L, 2003. Biodegradable Composites Based on L-Polylactide and Jute Fibres. Composites Science and Technology, 63(9): 1287-1296.
  • R. Pantani and L. S. Turng, 2015. Manufacturing of Advanced Biodegradable Polymeric Components. Journal of Applied Polymer Science, 132(48), 1-3.
  • Rafiee K, Schritt H, PleissnerD, Kaur G, Brar SK, 2021. Biodegradable Green Composites: It’s Never Too Late to Mend. Current Opinion in Green and Sustainable Chemistry, 30(1): 2452-2236.
  • Rana RS, Kumre R, Rana S, Purohit R, 2017. Characterization of Properties of Epoxy Sisal / Glass Fiber Reinforced Hybrid Composite. Materials Today: Proceedings, 4(4): 5445–51.
  • Reddy KH, Reddy RM, Ramesh M, Krishnudu DM, Reddy BM, Rao HR, 2021. Impact of Alkali Treatment on Characterization of Tapsi (Sterculia Urens) Natural Bark Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 18(3): 378–89.
  • Roy K, Debnath SC, Tzounis L, Pongwisuthiruchte A, Potiyaraj P. Potiyaraj P, 2020. Polymers Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber. Polymers, 12(2): 1-14.
  • Rubio-López A, Artero-Guerrero, J, Pernas-Sánchez J, Santiuste C, 2017. Compression after Impact of Flax/PLA Biodegradable Composites. Polymer Testing, 59: 127–35.
  • Shanmugam V, Mensah RA, Försth M, Sas G, Restás A, Addy C, Xu Q, Jiang L, Neisiany RE, Singha S, George G, JoseT, Berto F, Hedenqvist MS, Das O, Ramakrishna S, 2021. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C, 5(1):1-16.
  • Shrivastava A, Dondapati S, 2021. Biodegradable Composites Based on Biopolymers and Natural Bast Fibres: A Review. Materials Today: Proceedings, In Press.
  • Siakeng R, Jawaid M, Ariffin H, Sapuan SM, 2019. Mechanical, Dynamic, and Thermomechanical Properties of Coir/Pineapple Leaf Fiber Reinforced Polylactic Acid Hybrid Biocomposites. Polymer Composites, 40(5): 2000–2011.
  • Sienkiewicz A, Czub P, 2020. Flame Retardancy of Biobased Composites—Research Development. Materials, 13(22): 1–30.
  • Soleimani M, Tabil L, Panigrahi S, Opoku A, 2008. The Effect of Fiber Pretreatment and Compatibilizer on Mechanical and Physical Properties of Flax Fiber-Polypropylene Composites. Journal of Polymers and the Environment, 16(1): 74–82.
  • Syduzzaman M, Faruque MAA, Bilisik K, Naebe M, 2020. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10(10): 1–34.
  • Taekema J, Karana E, 2012. Creating Awareness on Natural Fibre Composites in Design. Proceedings of International Design Conference, 12th International Design Conference, Dubrovnik, Croatia, pp: 1141–50.
  • Thwe MM, Liao K, 2002. Effects of Environmental Aging on the Mechanical Properties of Bamboo-Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Composites - Part A: Applied Science and Manufacturing, 33(1): 43–52.
  • Vijay R, Manoharan S, Arjun S, Vinod A, 2020. Characterization of Silane-Treated and Untreated Natural Fibers from Stem of Leucas Aspera. Journal of Natural Fibers, 1-18.
  • Vilaplana F, Strömberg E, Karlsson E, 2010. Environmental and Resource Aspects of Sustainable Biocomposites. In Polymer Degradation and Stability, 95(11): 2147–61.
  • Wang Q, Zhang Y, Liang W, Wang J, Chen Y, 2020. Effect of Silane Treatment on Mechanical Properties and Thermal Behavior of Bamboo Fibers Reinforced Polypropylene Composites. Journal of Engineered Fibers and Fabrics, 15(33):1-10.
  • Wang, Ying, Wang Y, Mei Y, Wang Q, Wei W, Huang F, Li Y, Li J, Zhou Z, 2019. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface-Modified Helical Carbon Nanotubes. Composites Part B: Engineering 162: 54–61.
  • Xia X, Liu W, Zhou L, Hua Z, Liu H, He S, 2016. Modification of Flax Fiber Surface and Its Compatibilization in Polylactic Acid/Flax Composites. Iranian Polymer Journal, 25(1): 25–35.
  • Yan L, Chouw N, Yuan X, 2012. Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment. Journal of Reinforced Plastics and Composites, 31(6): 425–37.
  • Yu T, Jiang N, Li Y, 2014. Study on Short Ramie Fiber/Poly(Lactic Acid) Composites Compatibilized by Maleic Anhydride. Composites Part A: Applied Science and Manufacturing, 64: 139–46.
  • Yu T, Ren J, Li S, Yuan H, Li Y, 2010. Effect of Fiber Surface-Treatments on the Properties of Poly(Lactic Acid)/Ramie Composites. Composites Part A: Applied Science and Manufacturing, 41(4): 499–505.
  • Zhan J, Li J, Wang G, Guan Y, Zhao G, Lin J,Nacear H, Coutellier D, 2021. Review on the Performances, Foaming and Injection Molding Simulation of Natural Fiber Composites. Polymer Composites 42(3): 1305–24.
  • Zhang L, Li Z, Pan YT, Yanez AP, Hu S, Zhang XQ, Wang R, Wang DY, 2018. Polydopamine Induced Natural Fiber Surface Functionalization: A Way towards Flame Retardancy of Flax/Poly(Lactic Acid) Biocomposites. Composites Part B: Engineering.

A review of green composites mechanical properties and applications in automotive industry

Yıl 2021, , 3035 - 3054, 15.12.2021
https://doi.org/10.21597/jist.952748

Öz

Recently, there has been a serious awareness about the use of materials derived from renewable resources due to reasons such as global warming, environmental pollution and the possibility of running out of oil. With the production of composite materials from natural sources, there has been a significant reduction in carbon footprint and greenhouse gas emissions from the production of composites to the end of their useful life. In addition, the use of environmentally friendly composites produced from natural resources in the automotive industry has reduced costs, lightened the vehicle and reduced fuel consumption. Green composites emerge as a good alternative to the composites currently used in construction, aerospace, automotive, sports, packaging and, similar fields due to their features such as sustainability, biodegradability, high specific strength and specific modulus. However, the weak interfacial bond of the green composites between the matrix and the natural fibers, high moisture absorption, flammability at relatively low temperatures, low impact resistance and relatively poor strength must be further improved. In the study, the work carried out by researchers to improve these characteristics was reviewed and presented as a summary. The studies showed that different modification processes were applied to enhance the interfacial bond of the green composite and that additives were used for fire resistance. The aim of the study is to provide up-to-date information about the mechanical of green composites, their production methods, and their place in the automotive industry. The green composites provide weight loss in automotive parts is between 1.2–1.9 kg in the front door console, 0.8–1.6 kg in the rear door console and 1.5–2.5 kg in the trunk console of well-known car brands such as BMW, Ford, Renault and Volvo. Average gas emission target for new cars will be 95 g CO2 km-1 after 2021 in the EU. Using light weight green composites will significantly decrease the fuel consumption of vehicles consequently total car CO2 emissions reduce as well.

Proje Numarası

2018_FDK_3041

Kaynakça

  • Agrebi F, Hammami H, Asim M, Jawaid M, Kallel A, 2020. Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials, 54(7): 937–946.
  • Annandarajah C, 2020. Manufacture and Charecterization of Natural Fiber Biocomposites for Automative Applications. Doktora Tezi, IOWA State University, Ames Lowa, USA.
  • Aruan Efendy MG, Pickering KL, 2014. Comparison of Harakeke with Hemp Fibre as a Potential Reinforcement in Composites. Composites Part A: Applied Science and Manufacturing, 67: 259–67.
  • Asumani O, Paskaramoorthy R, 2021. Fatigue and Impact Strengths of Kenaf Fibre Reinforced Polypropylene Composites: Effects of Fibre Treatments, Advanced Composite Materials, 30(2): 103–15.
  • Avci A, Eker AA, Bodur MS, 2020. Effect of Coupling Agent and Alkali Treatment on Mechanical, Thermal, and Morphological Properties of Flax Fiber-Reinforced PLA Composites. Green Materials, In press.
  • Azizah AB, Rozman HD, Azniwati AA, Tay GS, 2020. The Effect of Filler Loading and Silane Treatment on Kenaf Core Reinforced Polyurethane Composites: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 28(2): 517–31.
  • Bajracharya RM, Bajwa DS, Bajwa SG, 2017. Mechanical Properties of Polylactic Acid Composites Reinforced with Cotton Gin Waste and Flax Fibers. Procedia Engineering, 200: 370–76.
  • Bax B, Müssig J, 2008. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Composites Science and Technology, 68(7-8): 1601-1607
  • Bledzki AK, Jaszkiewicz A, 2010. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres - A Comparative Study to PP. Composites Science and Technology, 70(12): 1687–96.
  • Bledzki AK, Jaszkiewicz A, Scherzer D, 2009. Mechanical Properties of PLA Composites with Man-Made Cellulose and Abaca Fibres. Composites Part A: Applied Science and Manufacturing, 40(4): 404–12.
  • Bodros E, Pillin I, Montrelay N, Baley C, 2007. Could Biopolymers Reinforced by Randomly Scattered Flax Fibre Be Used in Structural Applications? Composites Science and Technology, 67(3–4): 462–70.
  • Bodur MS, Sonmez HE, Bakkal M, 2017. An Investigation for the Effect of Recycled Matrix on the Properties of Textile Waste Cotton Fiber Reinforced (T-FRP) Composites. Polymer Composites, 38(7): 1231–40.
  • Bodur, Bodur MS, Bakkal M, Sonmez HE, 2016. The Effects of Different Chemical Treatment Methods on the Mechanical and Thermal Properties of Textile Fiber Reinforced Polymer Composites. Journal of Composite Materials, 50(27): 3817–30.
  • Callister W, Rethwisch D, 2014. Wiley Materials Science. John Wiley, New York, USA.
  • Cha YH, Kim KS, Kim DJ, 1998. Evaluation on the Fracture Toughness and Strength of Fiber Reinforced Brittle Matrix Composites. KSME International Journal, 12(3): 370–79.
  • Chaitanya S, Singh I, 2016. Processing of PLA_sisal Fiber Biocomposites Using Direct- and Extrusion-Injection Molding. Materials and Manufacturing Processes, 32(5), 468-474.
  • Couture A, Lebrun G, Laperrière L, 2016. Mechanical Properties of Polylactic Acid (PLA) Composites Reinforced with Unidirectional Flax and Flax-Paper Layers. Composite Structures, 154(1): 286-295.
  • Dhakal HN, Zhang ZY, Guthrie R, MacMullen J, Bennett N, 2013. Development of Flax/Carbon Fibre Hybrid Composites for Enhanced Properties. Carbohydrate Polymers, 96(1): 1–8.
  • Dicker MPM, Duckworth PF, Baker, Francois G, Hazzard MK, Weaver PM, 2014. Green Composites: A Review of Material Attributes and Complementary Applications. Composites Part A: Applied Science and Manufacturing, 56: 280–89.
  • Duigou AL, Bourmaud A, Davies P, Baley C, 2014. Long Term Immersion in Natural Seawater of Flax/PLA Biocomposite. Ocean Engineering, 90: 140–48.
  • EU Climate Action and the European Green Deal Climate Action.https://ec.europa.eu/clima/policies/eu-climate-action_en (Erişim Tarihi: 28.05.2021).
  • European Commission. Climate Action. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en (Erişim Tarihi: 28.05.2021).
  • Feng NL, Malingam SD, Razali N, Subramonian S, 2020. Alkali and Silane Treatments towards Exemplary Mechanical Properties of Kenaf and Pineapple Leaf Fibre-Reinforced Composites. Journal of Bionic Engineering, 17(2): 380–92.
  • Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M, 2016. Physical and Mechanical Properties of PLA Composites Reinforced by TiO2 Grafted Flax Fibers. Materials and Design, 106: 295–304.
  • Gamon G, Evon P, Rigal L, 2013. Twin-Screw Extrusion Impact on Natural Fibre Morphology and Material Properties in Poly(Lactic Acid) Based Biocomposites. Industrial Crops and Products, 46: 173–85.
  • Gassan J, 2002. A Study of Fibre and Interface Parameters Affecting the Fatigue Behaviour of Natural Fibre Composites. Composites - Part A: Applied Science and Manufacturing, 33(3): 369–74.
  • Georgiopoulos P, Christopoulos A, Koutsoumpis S, Kontou E, 2016. The Effect of Surface Treatment on the Performance of Flax/Biodegradable Composites. Composites Part B: Engineering, 106: 88–98.
  • Georgiopoulos P, Kontou E, Georgousis G, 2018. Effect of Silane Treatment Loading on the Flexural Properties of PLA/Flax Unidirectional Composites. Composites Communications, 10(1): 6-10.
  • Gholampour A, Ozbakkaloglu, 2020. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, Journal of Materials Science, 55(3): 829-892.
  • González AJ, Sanchez SE, Lagaron JM, Olsson RT, GamezPJ, Cabedo L, 2017. Assessing the Thermoformability of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Poly(Acid Lactic) Blends Compatibilized with Diisocyanates. Polymer Testing, 62: 235–45.
  • Hao LC, Sapuan SM, Hassan MR. Sheltami RM, 2018. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites Natural Fiber Reinforced Vinyl Polymer Composites. Woodhead Publishing, 27-70, Michigan, USA.
  • Hassan NE, Bai J, Dou DQ, 2019. Biopolymers; Definition, Classification and Applications. Egyptian Journal of Chemistry, 62(9): 1725–37.
  • Hatipoğlu A, 2020. Preparation And Characterization Of Poly (Lactic Acid) / Barıte Composites. Yüksek Lisans Tezi, Alparslan Türkeş Science And Technology University, Adana, Turkey.
  • Hong CK, Kim N, Kang SL, Nah C, Lee YS, Cho BH, Ahn JH, 2008. Mechanical Properties of Maleic Anhydride Treated Jute Fibre/Polypropyiene Composites. Plastics, Rubber and Composites, 37(7): 325–30.
  • Hoque MB, Hossain MS, Nahid AM, Bari S, Khan RA, 2018. Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. Nano Hybrids and Composites, 21: 31–42.
  • Hu R, Lim JK, 2007. Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites. Journal of Composite Materials, 41(13): 1655–69.
  • Huda MK and Widiastuti I, 2021. Natural Fiber Reinforced Polymer in Automotive Application: A Systematic Literature Review. Journal of Physics: Conference Series, 1808(1): 012015.
  • Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M, 2008. Properties and Performance of Natural-Fibre Composites, Woodhead Publishing, 221–26, Michigan, USA.
  • Jain J, Sinha S, Jain S, 2019. Compendious Characterization of Chemically Treated Natural Fiber from Pineapple Leaves for Reinforcement in Polymer Composites. Journal of Natural Fibers, 18(6): 845–56.
  • Karmaker AC, Shneider jP, 1996. Mechanical Performance of Short Jute Fibre Reinforced Polypropylene. Journal of Materials Science Letters, 15(3): 201–2.
  • Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N, 2019. An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Materials Today: Proceedings, 27: 2828–34.
  • Keck S and Fulland M, 2016. Effect of Fibre Volume Fraction and Fibre Direction on Crack Paths in Flax Fibre-Reinforced Composites. Engineering Fracture Mechanics, 167: 201–9.
  • Ko HU, Kim JW, Kim HC, Zhai L, Kim J, 2020. Esterified PVA-Lignin Resin by Maleic Acid Applicable for Natural Fiber Reinforced Composites. Journal of Applied Polymer Science, 137(26): 1–9.
  • Koronis G, Silva A, 2018. Green Composites for Automotive Applications.Woodhead Publishing, Michigan, USA.
  • Koronis G, Silva A, Fontul M, 2013. Green Composites: A Review of Adequate Materials for Automotive Applications. Composites Part B: Engineering, 44(1):120-127.
  • Kumar S, Samal SK, Mohanty S, Nayak SK, 2018. Recent Development of Biobased Epoxy Resins: A Review. Polymer - Plastics Technology and Engineering 57(3): 133–55.
  • Liang Z, Wu H, Liu R, Wu C, 2021. Preparation of Long Sisal Fiber-Reinforced Polylactic Acid Biocomposites with Highly Improved Mechanical Performance. Polymers 13(7): 1124.
  • Liu B, Jinwen Z, Gabriel G, Linshu L, 2012. Performance Enhancement of Poly (Lactic Acid)/ Soy Protein Concentrate Blends by promoting formation of network structure. Green materials, 1(3): 176-185.
  • Lotfi A, Li H, Dao DV, Prusty G, 2021. Natural Fiber–Reinforced Composites: A Review on Material, Manufacturing, and Machinability. Journal of Thermoplastic Composite Materials, 34(2): 238–84.
  • Maichin P, Suwan T, Jitsangiam P, Chindaprasirt P, and Fan M, 2020. Effect of Self-Treatment Process on Properties of Natural Fiber-Reinforced Geopolymer Composites. Materials and Manufacturing Processes, 35(10): 1120–28.
  • Mann GS, Singh LP, Kumar P, Singh S, 2020. Green Composites: A Review of Processing Technologies and Recent Applications. Journal of Thermoplastic Composite Materials, 33(8): 1145–71.
  • Mantia FPL, Morreale M, 2011. Green Composites: A Brief Review. Composites Part A: Applied Science and Manufacturing, 42(6): 579–88.
  • Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS, 2015. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015(1):1-15.
  • Mohanty AK, Drzal LT, Group F, 2005. Natural Fibers, Biopolymers, And Biocomposites, Taylor Francis, New York, USA.
  • Najeeb MI, Sultan MTH, Andou Y, Shah AUM, Eksiler K, Jawaid M, Ariffin AH, 2020. Characterization of Silane Treated Malaysian Yankee Pineapple AC6 Leaf Fiber (PALF) towards Industrial Applications. Journal of Materials Research and Technology, 9(3): 3128–39.
  • Nassiopoulos E, Njuguna J, 2015. Thermo-Mechanical Performance of Poly(Lactic Acid)/Flax Fibre-Reinforced Biocomposites. Materials and Design, 66(PB): 473–85.
  • O’Donnell A, Dweib MA, Wool RP, 2004. Natural Fiber Composites with Plant Oil-Based Resin. Composites Science and Technology, 64(9), 1135-1145.
  • Oksman K, Skrifvars M, Selin JF, 2003. Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Composites Science and Technology, 63(9): 1317-1324.
  • Patil A, Patel A, Purohit R, 2017. An Overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings 4(2): 3807–15.
  • Plackett D, Andersen TL, Pedersen WB, Nielsen L, 2003. Biodegradable Composites Based on L-Polylactide and Jute Fibres. Composites Science and Technology, 63(9): 1287-1296.
  • R. Pantani and L. S. Turng, 2015. Manufacturing of Advanced Biodegradable Polymeric Components. Journal of Applied Polymer Science, 132(48), 1-3.
  • Rafiee K, Schritt H, PleissnerD, Kaur G, Brar SK, 2021. Biodegradable Green Composites: It’s Never Too Late to Mend. Current Opinion in Green and Sustainable Chemistry, 30(1): 2452-2236.
  • Rana RS, Kumre R, Rana S, Purohit R, 2017. Characterization of Properties of Epoxy Sisal / Glass Fiber Reinforced Hybrid Composite. Materials Today: Proceedings, 4(4): 5445–51.
  • Reddy KH, Reddy RM, Ramesh M, Krishnudu DM, Reddy BM, Rao HR, 2021. Impact of Alkali Treatment on Characterization of Tapsi (Sterculia Urens) Natural Bark Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 18(3): 378–89.
  • Roy K, Debnath SC, Tzounis L, Pongwisuthiruchte A, Potiyaraj P. Potiyaraj P, 2020. Polymers Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber. Polymers, 12(2): 1-14.
  • Rubio-López A, Artero-Guerrero, J, Pernas-Sánchez J, Santiuste C, 2017. Compression after Impact of Flax/PLA Biodegradable Composites. Polymer Testing, 59: 127–35.
  • Shanmugam V, Mensah RA, Försth M, Sas G, Restás A, Addy C, Xu Q, Jiang L, Neisiany RE, Singha S, George G, JoseT, Berto F, Hedenqvist MS, Das O, Ramakrishna S, 2021. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C, 5(1):1-16.
  • Shrivastava A, Dondapati S, 2021. Biodegradable Composites Based on Biopolymers and Natural Bast Fibres: A Review. Materials Today: Proceedings, In Press.
  • Siakeng R, Jawaid M, Ariffin H, Sapuan SM, 2019. Mechanical, Dynamic, and Thermomechanical Properties of Coir/Pineapple Leaf Fiber Reinforced Polylactic Acid Hybrid Biocomposites. Polymer Composites, 40(5): 2000–2011.
  • Sienkiewicz A, Czub P, 2020. Flame Retardancy of Biobased Composites—Research Development. Materials, 13(22): 1–30.
  • Soleimani M, Tabil L, Panigrahi S, Opoku A, 2008. The Effect of Fiber Pretreatment and Compatibilizer on Mechanical and Physical Properties of Flax Fiber-Polypropylene Composites. Journal of Polymers and the Environment, 16(1): 74–82.
  • Syduzzaman M, Faruque MAA, Bilisik K, Naebe M, 2020. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10(10): 1–34.
  • Taekema J, Karana E, 2012. Creating Awareness on Natural Fibre Composites in Design. Proceedings of International Design Conference, 12th International Design Conference, Dubrovnik, Croatia, pp: 1141–50.
  • Thwe MM, Liao K, 2002. Effects of Environmental Aging on the Mechanical Properties of Bamboo-Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Composites - Part A: Applied Science and Manufacturing, 33(1): 43–52.
  • Vijay R, Manoharan S, Arjun S, Vinod A, 2020. Characterization of Silane-Treated and Untreated Natural Fibers from Stem of Leucas Aspera. Journal of Natural Fibers, 1-18.
  • Vilaplana F, Strömberg E, Karlsson E, 2010. Environmental and Resource Aspects of Sustainable Biocomposites. In Polymer Degradation and Stability, 95(11): 2147–61.
  • Wang Q, Zhang Y, Liang W, Wang J, Chen Y, 2020. Effect of Silane Treatment on Mechanical Properties and Thermal Behavior of Bamboo Fibers Reinforced Polypropylene Composites. Journal of Engineered Fibers and Fabrics, 15(33):1-10.
  • Wang, Ying, Wang Y, Mei Y, Wang Q, Wei W, Huang F, Li Y, Li J, Zhou Z, 2019. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface-Modified Helical Carbon Nanotubes. Composites Part B: Engineering 162: 54–61.
  • Xia X, Liu W, Zhou L, Hua Z, Liu H, He S, 2016. Modification of Flax Fiber Surface and Its Compatibilization in Polylactic Acid/Flax Composites. Iranian Polymer Journal, 25(1): 25–35.
  • Yan L, Chouw N, Yuan X, 2012. Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment. Journal of Reinforced Plastics and Composites, 31(6): 425–37.
  • Yu T, Jiang N, Li Y, 2014. Study on Short Ramie Fiber/Poly(Lactic Acid) Composites Compatibilized by Maleic Anhydride. Composites Part A: Applied Science and Manufacturing, 64: 139–46.
  • Yu T, Ren J, Li S, Yuan H, Li Y, 2010. Effect of Fiber Surface-Treatments on the Properties of Poly(Lactic Acid)/Ramie Composites. Composites Part A: Applied Science and Manufacturing, 41(4): 499–505.
  • Zhan J, Li J, Wang G, Guan Y, Zhao G, Lin J,Nacear H, Coutellier D, 2021. Review on the Performances, Foaming and Injection Molding Simulation of Natural Fiber Composites. Polymer Composites 42(3): 1305–24.
  • Zhang L, Li Z, Pan YT, Yanez AP, Hu S, Zhang XQ, Wang R, Wang DY, 2018. Polydopamine Induced Natural Fiber Surface Functionalization: A Way towards Flame Retardancy of Flax/Poly(Lactic Acid) Biocomposites. Composites Part B: Engineering.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Ali Avcı 0000-0003-3901-6248

Ayşegül Akdoğan Eker 0000-0003-0212-9230

Mehmet Safa Bodur 0000-0001-5976-0256

Proje Numarası 2018_FDK_3041
Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 15 Haziran 2021
Kabul Tarihi 11 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Avcı, A., Akdoğan Eker, A., & Bodur, M. S. (2021). Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı. Journal of the Institute of Science and Technology, 11(4), 3035-3054. https://doi.org/10.21597/jist.952748
AMA Avcı A, Akdoğan Eker A, Bodur MS. Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):3035-3054. doi:10.21597/jist.952748
Chicago Avcı, Ali, Ayşegül Akdoğan Eker, ve Mehmet Safa Bodur. “Yeşil Kompozit Malzemelerin Performans Özellikleri Ve Otomotiv Endüstrisinde Kullanımı”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 3035-54. https://doi.org/10.21597/jist.952748.
EndNote Avcı A, Akdoğan Eker A, Bodur MS (01 Aralık 2021) Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı. Journal of the Institute of Science and Technology 11 4 3035–3054.
IEEE A. Avcı, A. Akdoğan Eker, ve M. S. Bodur, “Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 3035–3054, 2021, doi: 10.21597/jist.952748.
ISNAD Avcı, Ali vd. “Yeşil Kompozit Malzemelerin Performans Özellikleri Ve Otomotiv Endüstrisinde Kullanımı”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 3035-3054. https://doi.org/10.21597/jist.952748.
JAMA Avcı A, Akdoğan Eker A, Bodur MS. Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:3035–3054.
MLA Avcı, Ali vd. “Yeşil Kompozit Malzemelerin Performans Özellikleri Ve Otomotiv Endüstrisinde Kullanımı”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 3035-54, doi:10.21597/jist.952748.
Vancouver Avcı A, Akdoğan Eker A, Bodur MS. Yeşil Kompozit Malzemelerin Performans Özellikleri ve Otomotiv Endüstrisinde Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):3035-54.