Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi

Yıl 2022, , 843 - 856, 01.06.2022
https://doi.org/10.21597/jist.998196

Öz

Kuraklık diğer doğal afetlerden farklı olarak gelişimi daha uzun zaman alan ve etkileri daha uzun süre devam eden bir afettir. Meydana gelmesi muhtemel bir kuraklığın önceden belirlenmesi, kuraklığın olumsuz etkilerinin daha etkili bir şekilde azaltılmasını mümkün kılmaktadır. Standartlaştırılmış Yağış İndeksi (SYİ) farklı iklim koşullarına sahip, farklı zaman dilimleri ve bölgeler arasındaki kuraklıkları tanımlamak için en sık kullanılan kuraklık indeksidir. Bu çalışmanın amacı almış olduğu yağış miktarı bakımından Türkiye’nin en önemli hidrolojik havzalarından biri olan Doğu Karadeniz Havzası’nın (DKH) geçmiş ve gelecek dönem kuraklık analizini SYİ parametresi ile gerçekleştirmek ve bu parametrenin eğilimini belirlemektir. Bu kapsamda DKH içinde ve çevresinde yer alan 12 meteoroloji istasyonundan ölçülmüş olan 1981-2010 dönemi aylık toplam yağış verileri kullanılarak SYİ değerleri hesaplanmıştır. Ayrıca CMIP5 arşivinde yer alan GFDL-ESM-2M genel dolaşım modelinin iyimser (RCP4.5) ve kötümser (RCP8.5) senaryolar altındaki bölgesel ölçeğe indirgenmiş olan 2021-2050 dönemi çıktılarına da aynı işlemler uygulanmıştır. Meteorolojik kuraklığın eğilim analizleri için 1 ve 3 aylık SYİ değerleri üzerinde Yenilikçi Eğilim Analizi yöntemi kullanılarak üç farklı grupta ve %95 güven düzeyinde tekdüze olarak eğilim analizi gerçekleştirilmiştir. Gözlem değerlerinde ve RCP senaryolarında istasyonların yaklaşık %25’inde şiddetli yağışlarda ve şiddetli kuraklıklarda artış görülmüştür. Ancak SYİ değerlerinde geçmiş dönem periyodunda Akçaabat istasyonu (azalan eğilim) hariç tekdüze anlamlı artan eğilim görülürken gelecek dönem periyodunda her iki senaryo için azalan yönde eğilim görülmüştür.

Kaynakça

  • Bağçaci SÇ, Yucel I, Duzenli E, Yilmaz MT, 2021. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256: 105576.
  • Bayissa, YA, Moges SA, Xuan Y, Van Andel SJ, Maskey S, Solomatine DP, Griensven A, Van Tadesse T, 2015. Spatio-temporal assessment of meteorological drought under the influence of varying record length: The case of Upper Blue Nile Basin, Ethiopia. Hydrological Sciences Journal, 60: 1927–1942.
  • Caloiero T, Veltri S, Caloiero P, Frustaci F, 2018. Drought analysis in Europe and in the Mediterranean basin using the standardized precipitation index. Water, 10(8): 1043.
  • Çeribaşı G, Doğan E, 2015. Karadeniz ve Sakarya Havzalarında Yıllık Ortalama Yağışların Trend Analizi. Uluslararası Teknolojik Bilimler Dergisi, 7(1): 1-7.
  • Çeribaşı, G, 2019. Şen Yöntemi ve Trend Yöntemleri Kullanılarak Doğu Karadeniz Havzasının Yağış Verilerinin Analiz Edilmesi. Journal of the Institute of Science and Technology, 9(1): 254-264.
  • Dabanlı, İ. (2017). Türkiye’de İklim Değişikliğinin Yağış-Sıcaklığa Etkisi ve Kuraklık Analizi: Akarçay Örneği. Fen Bilimleri Enstitüsü. İstanbul Teknik Üniversitesi, Doktora Tezi (Basılmış).
  • Demir Ö, Atay H, Eskioğlu O, Tuvan A, Demircan M, Akçakaya A, 2013. RCP4.5 Senaryosuna göre Türkiye’de sıcaklık ve yağış projeksiyonları, III. Türkiye İklim Değişikliği Kongresi, 3-5 Haziran 2013, İstanbul-Türkiye.
  • Demircan M, Demir Ö, Atay H, Eskioğlu O, Yazıcı B, Gürkan H, Tuvan A, Akçakaya A, 2014. Türkiye’de yeni senaryolara göre iklim değişikliği projeksiyonları, TÜCAUM VIII. Coğrafya Sempozyumu, 23-24 Ekim 2014, Ankara-Türkiye
  • Demircan M, Gürkan H, Eskioğlu O, Arabaci H, Coşkun M, 2017. Climate change projections for Turkey: three models and two scenarios. Turkish Journal of Water Science and Management, 1(1): 22-43.
  • Dikici M, 2019. Asi Havzası’nda (Türkiye) kuraklık analizi. Doğal Afetler ve Çevre Dergisi, 5(1): 22-40.
  • EDO, 2020. European drought observator indicator factsheet. https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf (Erişim Tarihi: 01.01.2022).
  • Fang K, Gou X, Chen F, Davi N, Liu C, 2013. Spatiotemporal drought variability for central and eastern Asia over the past seven centuries derived from tree-ring based reconstructions. Quaternary International, 283: 107–116.
  • Feng S, Hu Q, Oglesby RJ, 2011. Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dynamics, 37: 569–586.
  • Gudmundsson L, Stagge JH, 2016. SCI: Standardized Climate Indices such as SPI, SRI or SPEI R package version 1.0-2. https://cran.r-project.org/web/packages/SCI/SCI.pdf (Erişim Tarihi: 01.01.2022).
  • Guttman NB, 1999. Accepting the standardized precipitation index: a calculation algorithm. JAWRA Journal of the American Water Resources Association, 35: 311–322.
  • Haltas I, Yildirim E, Oztas F, Demir I, 2021. A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. International Journal of Disaster Risk Reduction, 56: 102086.
  • Hamlet AF, Byun K, Robeson SM, Widhalm M, Baldwin M, 2020, Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling. Climatic Change, 163(4): 1881-1895.
  • Hua T, Wang XM, Zhang CX, Lang LL, 2013. Temporal and spatial variations in the Palmer Drought Severity Index over the past four centuries in arid, semiarid, and semihumid East Asia. Chinese Science Bulletin 58: 4143–4152.
  • IPCC 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, et al.]. Cambridge, United Kingdom.
  • Kron W, Eichner J, Kundzewicz ZW, 2019. Reduction of flood risk in Europe–Reflections from a reinsurance perspective. Journal of Hydrology, 576: 197-209.
  • Lloyd‐Hughes B, Saunders MA, 2002. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(13):1571-1592.
  • McKee TB, Doesken, NJ, Kleist, J, 1993. The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology. Boston, pp. 179–183.
  • McKee TB, Doesken NJ, Kleist J, 1995. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas-USA, 15–20 January 1995, pp. 233–236.
  • MGM, 2021. Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/ (Erişim Tarihi: 01.01.2022)
  • Minetti JL, Vargas WM, Poblete AG, de la Zerda LR, Acuña LR, 2010. Regional droughts in southern South America. Theoretical and Applied Climatology. 102: 403–415.
  • Nacar S, Kankal M, Okkan U, 2019. Statistical Downscaling of Monthly Mean Air Temperature Using NCEP/NCAR Re-analysis Data: A Case Study for the Eastern Black Sea Basin. In 3rd International Conference on Advanced Engineering Technologies, September 19-21, 2019, Bayburt-Turkey.
  • Nacar S, 2020. İklim Değişikliğinin Doğu Karadeniz Havzası Sıcaklık ve Yağış Parametreleri Üzerindeki Olası Etkilerinin İncelenmesi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Nacar S, Kankal M, Okkan U, 2021. EraInterim Re-analiz Verileri Kullanılarak İstatistiksel Ölçek İndirgeme Yöntemi ile Doğu Karadeniz Havzası Aylık Ortalama Sıcaklık Değerlerinin Tahmin Edilmesi. Doğal Afetler ve Çevre Dergisi, 7(1): 136-148.
  • Nalbantis I, Tsakiris G, 2009. Assessment of hydrological drought revisited. Water Resources Management, 23: 881–897.
  • Okkan U, Karakan E, 2016, İklim değişikliğinin ikizcetepeler barajı akımlarına etkilerinin modellenmesi: 2015-2030 projeksiyonu. Teknik Dergi, 27(2): 7379-7401.
  • Okkan U, 2015. Assessing the effects of climate change on monthly precipitation: proposing of a downscaling strategy through a case study in Turkey. KSCE Journal of Civil Engineering, 19(4): 1150-1156.
  • Okkan U, Fistikoglu O, 2014. Evaluating climate change effects on runoff by statistical downscaling and hydrological model GR2M. Theoretical and Applied Alimatology, 117(1): 343-361.
  • Okkan U, Inan G 2015a. Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: use of machine learning methods, multiple GCMs and emission scenarios. International Journal of Climatology, 35(11): 3274-3295.
  • Okkan U, Inan G, 2015b. Bayesian learning and relevance vector machines approach for downscaling of monthly precipitation. Journal of Hydrologic Engineering, 20(4): 04014051.
  • Okkan U, Kirdemir U, 2016. Downscaling of monthly precipitation using CMIP5 climate models operated under RCPs. Meteorological Applications, 23(3): 514-528.
  • Okkan, U, Kirdemir, U, 2018. Investigation of the behavior of an agricultural-operated dam reservoir under RCP scenarios of AR5-IPCC. Water Resources Management, 32(8): 2847-2866.
  • Okkan U, Serbes ZA, Samui P, 2014. Relevance vector machines approach for long-term flow prediction. Neural Computing and Applications, 25(6): 1393-1405.
  • Palmer WC, 1965. Meteorlogical drought. US Weather Bur. 1965, 45:1–58.
  • Pamuk G, Özgürel M, Topçuoğlu K, 2004. Standart yağış indisi (SPI) ile Ege bölgesinde kuraklık analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41(1).
  • Partal T, Yavuz E, 2020. Orta Karadeniz ve Doğu Karadeniz Bölgesinde kuraklık indisleri üzerine trend analizi uygulanması. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2): 851-861.
  • Sen B, Topcu S, Türkeş M, Sen B, Warner JF, 2012. Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52(1), 175–191.
  • Şen Z, 2012. Innovative Trend Analysis Methodology. Journal of Hydrologic Engineering, 17: 1042–1046.
  • Şen Z, 2015. Applied Drought Modeling, Prediction, and Mitigation. Elsevier, pp. 1–41, Boston-USA
  • Şen Z, 2017. Innovative trend significance test and applications. Theoretical and Applied Climatology, 127: 939–947.
  • Shafer BA, Dezman LE, 1982. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snow pack runoff areas. In Proceedings of the 50th Annual Western Snow Conference, Reno, NV, USA, April 19–23, 164–175.
  • Shukla S, Wood AW, 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2).
  • Stagge, JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K, 2015. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35: 4027–4040.
  • Tabari H, Abghari H, Hosseinzadeh Talaee P, 2012. Temporal trends and spatial characteristics of drought and rainfall in arid and semi-arid regions of Iran. Hydrological Processes, 26: 3351–3361.
  • Tripathi S, Srinivas VV, Nanjundiah RS, 2006. Downscaling of precipitation for climate change scenarios: a support vector machine approach, Journal of Hydrology, 330(3-4): 621-640.
  • Tsakiris G, Pangalounad D, Vangelis H, 2017. A regional drought assessment based on the reconnaissance drought index (RDI). Water Resources Management, 21: 821–833.
  • Türkeş M, Tatli H, 2009. Use of the standardized precipitation index (spi) and a modified spi for shaping the drought probabilities over turkey. International Journal of Climatology, 29(15): 2270–2282.
  • Van Rooy MP, 1965. A rainfall anomaly index independent of time and space. Notos, 14: 43–48.
  • Vicente-Serrano SM, Beguería S, López-Moreno JI, 2010. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index-SPEI. Journal of Climate, 23: 1696–1718.
  • Wilby RL, Harris I, 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research, 42(2).
  • WMO, 2012. Standardized precipitation index user guide. World Meteorological Organization. http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf (Erişim Tarihi: 01.01.2022)
  • Wu H, Adler RF, Hong Y, Tian Y, Policelli F, 2012. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. Journal of Hydrometeorology, 13(4): 1268-1284.

Trend Analysis of Meteorological Droughts for Different Climate Change Scenarios in Eastern Black Sea Region

Yıl 2022, , 843 - 856, 01.06.2022
https://doi.org/10.21597/jist.998196

Öz

Unlike other natural disasters, drought takes longer to develop and its effects last longer. With this feature, monitoring a possible drought makes it possible to reduce the negative effects of drought more effectively. The Standardized Precipitation Index (SPI) is one of the few drought indexes proposed by researchers to describe droughts between different climatic conditions on different time periods and regions. This study aims to perform the past and future drought analysis of the Eastern Black Sea Basin (EBSB), which is one of the most important hydrological basins in terms of precipitation amount of Turkey, with SPI. In this context, SPI values were calculated using the monthly total precipitation data for the 1981-2010 period, which were measured from 12 meteorological stations in and around the EBSB. In addition, the same processes were applied to the 2021-2050 period outputs of the GFDL-ESM-2M general circulation model in the CMIP5 archive, which was downscaled to regional scale under optimistic (RCP4.5) and pessimistic (RCP8.5) scenarios. For trend analysis of meteorological drought, trend analysis was carried out in three different groups and 95% confidence interval, using Innovative Trend Analysis method on 1- and 3- monthly SPI values. In the observation values and RCP scenarios, about 25% of the stations saw an increase in severe wet class and in severe drought class. However, in the historical period, except for the Akçaabat station (decreasing trend), significant monotonic increasing trends were observed in the SPI values, while a decreasing trend was observed in the next period for both scenarios.

Kaynakça

  • Bağçaci SÇ, Yucel I, Duzenli E, Yilmaz MT, 2021. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256: 105576.
  • Bayissa, YA, Moges SA, Xuan Y, Van Andel SJ, Maskey S, Solomatine DP, Griensven A, Van Tadesse T, 2015. Spatio-temporal assessment of meteorological drought under the influence of varying record length: The case of Upper Blue Nile Basin, Ethiopia. Hydrological Sciences Journal, 60: 1927–1942.
  • Caloiero T, Veltri S, Caloiero P, Frustaci F, 2018. Drought analysis in Europe and in the Mediterranean basin using the standardized precipitation index. Water, 10(8): 1043.
  • Çeribaşı G, Doğan E, 2015. Karadeniz ve Sakarya Havzalarında Yıllık Ortalama Yağışların Trend Analizi. Uluslararası Teknolojik Bilimler Dergisi, 7(1): 1-7.
  • Çeribaşı, G, 2019. Şen Yöntemi ve Trend Yöntemleri Kullanılarak Doğu Karadeniz Havzasının Yağış Verilerinin Analiz Edilmesi. Journal of the Institute of Science and Technology, 9(1): 254-264.
  • Dabanlı, İ. (2017). Türkiye’de İklim Değişikliğinin Yağış-Sıcaklığa Etkisi ve Kuraklık Analizi: Akarçay Örneği. Fen Bilimleri Enstitüsü. İstanbul Teknik Üniversitesi, Doktora Tezi (Basılmış).
  • Demir Ö, Atay H, Eskioğlu O, Tuvan A, Demircan M, Akçakaya A, 2013. RCP4.5 Senaryosuna göre Türkiye’de sıcaklık ve yağış projeksiyonları, III. Türkiye İklim Değişikliği Kongresi, 3-5 Haziran 2013, İstanbul-Türkiye.
  • Demircan M, Demir Ö, Atay H, Eskioğlu O, Yazıcı B, Gürkan H, Tuvan A, Akçakaya A, 2014. Türkiye’de yeni senaryolara göre iklim değişikliği projeksiyonları, TÜCAUM VIII. Coğrafya Sempozyumu, 23-24 Ekim 2014, Ankara-Türkiye
  • Demircan M, Gürkan H, Eskioğlu O, Arabaci H, Coşkun M, 2017. Climate change projections for Turkey: three models and two scenarios. Turkish Journal of Water Science and Management, 1(1): 22-43.
  • Dikici M, 2019. Asi Havzası’nda (Türkiye) kuraklık analizi. Doğal Afetler ve Çevre Dergisi, 5(1): 22-40.
  • EDO, 2020. European drought observator indicator factsheet. https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf (Erişim Tarihi: 01.01.2022).
  • Fang K, Gou X, Chen F, Davi N, Liu C, 2013. Spatiotemporal drought variability for central and eastern Asia over the past seven centuries derived from tree-ring based reconstructions. Quaternary International, 283: 107–116.
  • Feng S, Hu Q, Oglesby RJ, 2011. Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dynamics, 37: 569–586.
  • Gudmundsson L, Stagge JH, 2016. SCI: Standardized Climate Indices such as SPI, SRI or SPEI R package version 1.0-2. https://cran.r-project.org/web/packages/SCI/SCI.pdf (Erişim Tarihi: 01.01.2022).
  • Guttman NB, 1999. Accepting the standardized precipitation index: a calculation algorithm. JAWRA Journal of the American Water Resources Association, 35: 311–322.
  • Haltas I, Yildirim E, Oztas F, Demir I, 2021. A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. International Journal of Disaster Risk Reduction, 56: 102086.
  • Hamlet AF, Byun K, Robeson SM, Widhalm M, Baldwin M, 2020, Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling. Climatic Change, 163(4): 1881-1895.
  • Hua T, Wang XM, Zhang CX, Lang LL, 2013. Temporal and spatial variations in the Palmer Drought Severity Index over the past four centuries in arid, semiarid, and semihumid East Asia. Chinese Science Bulletin 58: 4143–4152.
  • IPCC 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, et al.]. Cambridge, United Kingdom.
  • Kron W, Eichner J, Kundzewicz ZW, 2019. Reduction of flood risk in Europe–Reflections from a reinsurance perspective. Journal of Hydrology, 576: 197-209.
  • Lloyd‐Hughes B, Saunders MA, 2002. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(13):1571-1592.
  • McKee TB, Doesken, NJ, Kleist, J, 1993. The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology. Boston, pp. 179–183.
  • McKee TB, Doesken NJ, Kleist J, 1995. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas-USA, 15–20 January 1995, pp. 233–236.
  • MGM, 2021. Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/ (Erişim Tarihi: 01.01.2022)
  • Minetti JL, Vargas WM, Poblete AG, de la Zerda LR, Acuña LR, 2010. Regional droughts in southern South America. Theoretical and Applied Climatology. 102: 403–415.
  • Nacar S, Kankal M, Okkan U, 2019. Statistical Downscaling of Monthly Mean Air Temperature Using NCEP/NCAR Re-analysis Data: A Case Study for the Eastern Black Sea Basin. In 3rd International Conference on Advanced Engineering Technologies, September 19-21, 2019, Bayburt-Turkey.
  • Nacar S, 2020. İklim Değişikliğinin Doğu Karadeniz Havzası Sıcaklık ve Yağış Parametreleri Üzerindeki Olası Etkilerinin İncelenmesi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Nacar S, Kankal M, Okkan U, 2021. EraInterim Re-analiz Verileri Kullanılarak İstatistiksel Ölçek İndirgeme Yöntemi ile Doğu Karadeniz Havzası Aylık Ortalama Sıcaklık Değerlerinin Tahmin Edilmesi. Doğal Afetler ve Çevre Dergisi, 7(1): 136-148.
  • Nalbantis I, Tsakiris G, 2009. Assessment of hydrological drought revisited. Water Resources Management, 23: 881–897.
  • Okkan U, Karakan E, 2016, İklim değişikliğinin ikizcetepeler barajı akımlarına etkilerinin modellenmesi: 2015-2030 projeksiyonu. Teknik Dergi, 27(2): 7379-7401.
  • Okkan U, 2015. Assessing the effects of climate change on monthly precipitation: proposing of a downscaling strategy through a case study in Turkey. KSCE Journal of Civil Engineering, 19(4): 1150-1156.
  • Okkan U, Fistikoglu O, 2014. Evaluating climate change effects on runoff by statistical downscaling and hydrological model GR2M. Theoretical and Applied Alimatology, 117(1): 343-361.
  • Okkan U, Inan G 2015a. Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: use of machine learning methods, multiple GCMs and emission scenarios. International Journal of Climatology, 35(11): 3274-3295.
  • Okkan U, Inan G, 2015b. Bayesian learning and relevance vector machines approach for downscaling of monthly precipitation. Journal of Hydrologic Engineering, 20(4): 04014051.
  • Okkan U, Kirdemir U, 2016. Downscaling of monthly precipitation using CMIP5 climate models operated under RCPs. Meteorological Applications, 23(3): 514-528.
  • Okkan, U, Kirdemir, U, 2018. Investigation of the behavior of an agricultural-operated dam reservoir under RCP scenarios of AR5-IPCC. Water Resources Management, 32(8): 2847-2866.
  • Okkan U, Serbes ZA, Samui P, 2014. Relevance vector machines approach for long-term flow prediction. Neural Computing and Applications, 25(6): 1393-1405.
  • Palmer WC, 1965. Meteorlogical drought. US Weather Bur. 1965, 45:1–58.
  • Pamuk G, Özgürel M, Topçuoğlu K, 2004. Standart yağış indisi (SPI) ile Ege bölgesinde kuraklık analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41(1).
  • Partal T, Yavuz E, 2020. Orta Karadeniz ve Doğu Karadeniz Bölgesinde kuraklık indisleri üzerine trend analizi uygulanması. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2): 851-861.
  • Sen B, Topcu S, Türkeş M, Sen B, Warner JF, 2012. Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52(1), 175–191.
  • Şen Z, 2012. Innovative Trend Analysis Methodology. Journal of Hydrologic Engineering, 17: 1042–1046.
  • Şen Z, 2015. Applied Drought Modeling, Prediction, and Mitigation. Elsevier, pp. 1–41, Boston-USA
  • Şen Z, 2017. Innovative trend significance test and applications. Theoretical and Applied Climatology, 127: 939–947.
  • Shafer BA, Dezman LE, 1982. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snow pack runoff areas. In Proceedings of the 50th Annual Western Snow Conference, Reno, NV, USA, April 19–23, 164–175.
  • Shukla S, Wood AW, 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2).
  • Stagge, JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K, 2015. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35: 4027–4040.
  • Tabari H, Abghari H, Hosseinzadeh Talaee P, 2012. Temporal trends and spatial characteristics of drought and rainfall in arid and semi-arid regions of Iran. Hydrological Processes, 26: 3351–3361.
  • Tripathi S, Srinivas VV, Nanjundiah RS, 2006. Downscaling of precipitation for climate change scenarios: a support vector machine approach, Journal of Hydrology, 330(3-4): 621-640.
  • Tsakiris G, Pangalounad D, Vangelis H, 2017. A regional drought assessment based on the reconnaissance drought index (RDI). Water Resources Management, 21: 821–833.
  • Türkeş M, Tatli H, 2009. Use of the standardized precipitation index (spi) and a modified spi for shaping the drought probabilities over turkey. International Journal of Climatology, 29(15): 2270–2282.
  • Van Rooy MP, 1965. A rainfall anomaly index independent of time and space. Notos, 14: 43–48.
  • Vicente-Serrano SM, Beguería S, López-Moreno JI, 2010. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index-SPEI. Journal of Climate, 23: 1696–1718.
  • Wilby RL, Harris I, 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research, 42(2).
  • WMO, 2012. Standardized precipitation index user guide. World Meteorological Organization. http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf (Erişim Tarihi: 01.01.2022)
  • Wu H, Adler RF, Hong Y, Tian Y, Policelli F, 2012. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. Journal of Hydrometeorology, 13(4): 1268-1284.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği / Civil Engineering
Yazarlar

Sinan Nacar 0000-0003-2497-5032

Murat Şan 0000-0001-7006-8340

Murat Kankal 0000-0003-0897-4742

Umut Okkan 0000-0003-1284-3825

Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 20 Eylül 2021
Kabul Tarihi 20 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Nacar, S., Şan, M., Kankal, M., Okkan, U. (2022). Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi. Journal of the Institute of Science and Technology, 12(2), 843-856. https://doi.org/10.21597/jist.998196
AMA Nacar S, Şan M, Kankal M, Okkan U. Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2022;12(2):843-856. doi:10.21597/jist.998196
Chicago Nacar, Sinan, Murat Şan, Murat Kankal, ve Umut Okkan. “Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi”. Journal of the Institute of Science and Technology 12, sy. 2 (Haziran 2022): 843-56. https://doi.org/10.21597/jist.998196.
EndNote Nacar S, Şan M, Kankal M, Okkan U (01 Haziran 2022) Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi. Journal of the Institute of Science and Technology 12 2 843–856.
IEEE S. Nacar, M. Şan, M. Kankal, ve U. Okkan, “Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 2, ss. 843–856, 2022, doi: 10.21597/jist.998196.
ISNAD Nacar, Sinan vd. “Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi”. Journal of the Institute of Science and Technology 12/2 (Haziran 2022), 843-856. https://doi.org/10.21597/jist.998196.
JAMA Nacar S, Şan M, Kankal M, Okkan U. Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:843–856.
MLA Nacar, Sinan vd. “Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi”. Journal of the Institute of Science and Technology, c. 12, sy. 2, 2022, ss. 843-56, doi:10.21597/jist.998196.
Vancouver Nacar S, Şan M, Kankal M, Okkan U. Farklı İklim Değişikliği Senaryoları için Doğu Karadeniz Bölgesindeki Meteorolojik Kuraklıkların Eğilim Analizi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(2):843-56.