Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus

Yıl 2016, Cilt: 6 Sayı: 4, 31 - 39, 31.12.2016

Öz

Cuscuta species are holoparazit plants which obtained all need water and organic material from host
plants. The host plants are generally synthesized a variety of phenolic compounds in response to attack of parasitic
plants. In this study, the plant
Carthamus glaucus Bieb. subsp. glaucus (Compositae) used as host plant is an
important plant that contains several compounds inhibit the STAT-3 gene is directly related to prostate cancer. In the
study it was investigated that the effect of Cuscuta babylonica parasitism phenolic compounds of
C. glaucus. The
phenolic compounds of infected and uninfected C.glaucus plants analysed by LC/MS-MS. The results indicated
a rise in phenolic contents that known as defense chemicals quinic acid, gallic acid, tr-caffeic acid, hyperoside,
quercetin, and naringenin with dodder infestation. Besides in the content of tr-aconitic acid, vanillin, hesperidin,
4-OH-benzoic acid, salicylic acid and kaempferol decreased after dodder infestation.
  

Kaynakça

  • Ananthakrishnan TN, Daniel Wesley S, John Peter A, Marimuthu S, 1994. Ecological interactions of Helicoverpa armigera and its natural enemies. Int J Ecol Environ Sci 20: 317-331.
  • Antonova TS, terBorg ST, 1996. The role of peroxidase in the resistance of sunflower against Orobanche cumane in Russia. Weed Research 36: 113-121.
  • Arnau M, Renaudin S, Fer A, 1996. Investigations into the cellular and biochemical events involed in the resistance of a legume, (Phaseolus vulgaris) to a parasitic higher plant, Cuscuta reflexa. M.T. Moreno J.I 592-596.
  • Arrantlrakrislman TN, 1997. Gallic and salicylic acids: sentinels of plant defence against insects. Current Science 73.
  • Baytop T, 1997. Türkçe bitki adları sözlüğü; Türk Dil Kurumu Basımevi: Ankara Türkiye p 578.
  • Beckman CH, 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant P 57: 101–110.
  • Bennett RN, Wallsgrove RM, 1994. Secondary metabolites in plant defense mechanisms. New Phytol 127: 617-633.
  • Boudet A, 2007. Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722–2735.
  • Bouwmeeste HJ, Matusova R, Zhongkui S, Beale MH, 2003. Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6: 358-364.
  • Chou CH, 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev in Plant Sci 18: 609– 636.
  • Clé C, Hill LM, Niggewe R, Martin CR, Guisez Y, Prinsen E, Jansen MAK, 2008. Modulation of chlorogenic acid biosynthesisin Solanum lycopersicum; consequences for phenolic accumulationand UV-tolerance. Phytochemistry 69: 2149–2156.
  • Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, Adam LR, 2012. Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res3 191.
  • Dakora FD, Phillips DA, 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial defnitions of phytoalexins. Physiol Mol Plant P49 1–20.
  • Dangl JL, Jones JDG, 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.
  • Delsignore A, Romeo F, Giaccio M, 1997. Content of phenolic substances in basidiomycetes. Mycol Res 101: 552–556.
  • Deng F, Aoki M, Yogo Y, 2004. Effect of naringenin on the growth and lignin biosynthesis of gramoineous plants. Weed Biol Manag 4: 49–55.
  • Dmitriev AP, 2003. Signal molecules for plant defense responses to biotic stress. Russ J of Plant Physl 50: 417– 425.
  • El-Akkad SS, Hassan E A, Ali M E, 2002. Phenolic acid changes during Orobanche parasitism on faba bean and some other hosts. Egypt J Biol 4: 37-44.
  • Ertas A, Boga M, Yılmaz MA, Yesil Y, Hasimi N, Kaya MS, Kolak U, 2014. Chemical compositions by using LC-MS/MS and GC-MS and biological activities of Sedum sediforme, Jacq. Pau. J Agr Food Chem 62: 4601-4609.
  • Farah AF, 2007. Resistance of some plant species to feld dodder, Cuscuta campestris. African corp science conference Proceedings 8: 913-917.
  • Farah AF, 2010. The response of two legume crops, hyacinth bean and kidney bean to the parasitism of feld dodder, (Cuscuta campestris).
  • Furuhashi T, Fragner L, Furuhashi K, Valledor L, Sun X, Weckwerth W, 2012. Metabolite changes with induction of Cuscuta haustorium and translocation from host plants. J Plant Interact 7: 84-93.
  • Furuhashi T, Furuhashi K, Weckwerth W, 2011. The parasitic mechanism of the holostem parasitic plant Cuscuta. J Plant Interact 6: 207-219.
  • Gargallo-Garriga A, Sardans JV, Pérez-Trujillo M, Parella T, Seco R, Filella I, Peñuelas J, 2010. Metabolomic responses of Quercus ilex seedlings to wounding simulating herbivory. SMASH Conference Santiago de Compostela Spain.
  • Glodwassser Y, Hershenhorn HJ, Plalhire D, Kleifeld Y, Rubin B, 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol Mol Plant 54: 87-96.
  • Harborne JB, 1980. Plant phenolics. In: Encyclopedia of Plant physiol
  • Harvell KP, Bosland PW, 1997. The environment produces a signifcant effect on pungency of chiles. Hort Science 32: 1292–1297.
  • Hückelhoven R, 2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45: 101–127.
  • Iizuka L, Koıke S, Mıtzutanı J, 1974. Antibacterial substances in feces of silkworm larvae reared on mulberry leaves. Agric Biol Chem 38: 1549-1550.
  • Inderjit S, Gross E, 2000. Plant phenolics: potential role in aquatic and terrestrial ecosystems. In Polyphenols, Martens S Treutter D and Forkmann G eds. 206–234.
  • Jwa NS, Agrawal GS, Tamogami S, Yonekura M, Han O, Iwahashı H, Rakwal R, 2006. Role of defense/stress-related marker genes proteins and secondary metabolites in defning rice selfdefense mechanisms. Plant Physiol Biochem 44: 261-273.
  • Kaiser B, Vogg G, Fürst UB, Albert M, 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Frontiers in plant science 6.
  • Karban R, Baldwin IT, 1997. Induced Responses to Herbivory. University of Chicago Press Chicago
  • Khurana JP, Cleland CF, 1992. Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain Lemna paucicostata LP6. Plant physiol 100: 1541-1546.
  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, 2000. Colloquium paper: nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97: 8849–8855.
  • Koike S, Hzuka T, Mızutanl J, 1979. Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenic Streptococcusfaecalis AD-4. Agric Biol Chem 43: 1727-1731.
  • Korkina LG, 2007. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53: 15-25.
  • Krylov SN, Krylova SM, Chebotarev IG, Chebotareva AB, 1994. Inhibition of enzymatic indole-3-acetic acid oxidation by phenols. Phytochemistry 36: 263–267.
  • Kuijt, JToth R, 1976. Ultrastructure of angiosperm haustoria A review. Annuals of Botany 401:121-1130
  • Lattanzio V, Lattanzio VM, Cardinali A, 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 661: 23-67.
  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG, 2009. Identifcation of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150: 1567- 1575.
  • Likić S,Šola I,Ludwig-Müller J,Rusak G, 2014. Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana. Eur J Plant Pathol 138: 257-271.
  • Lindroth RL, Batzli GO, 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles, (Microtus ochrogaster).J Chem Ecol 10: 229-244.
  • Link KP, Angell HR, Walker JC, 1929. Isolation of protocatechuic acid from pigmented onion scales and its signifcance in relation to disease resistance in onions. J Biol Chem 81: 369– 375.
  • Liu CL, Wang JM, Chu CY, Cheng MT, 2002. In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxideinduced rat hepatotoxicity. Food Chem Toxicol 40: 635–641. Loake G, Grant M, 2007. Salicylic acid in plant defence–the players and protagonists. Curr Opin Plant Biol 10: 466–472.
  • Lorenc-Kukula K, Jafra S, Oszmıánskı I, Szopa J, 2005. Ectopic Expression of Anthocyanin 5-O-Glucosyltransferase in Potato Tubers Causes Increased Resistance to Bacteria. J Agrie Food Chem 5: 3 272-281.
  • Martínez C,Pons E, Prats G, León J, 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal 37: 209-217.
  • Mathesius U, 2001. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Expe Bot 52: 419–426.
  • McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, de Pamphilis CW, 2007. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta, (Convolvulaceae). BMC Biol. 5: 1-19.
  • Miles PW, 1999. Aphid saliva. Biol Rev Camb Philos Soc 74: 41– 85.
  • Mishra S, Sanwal GG, 1995. Changes in lipid composition of Brassica siliquae upon infection by Cuscuta. J Plant Physiol 146: 303-306.
  • Mumford FE, Smith DH, Castle JE, 1961. An inhibitor of indoleacetic acid oxidase from pea tips. Plant physiol 36: 752–756.
  • Murthy PS, 2009. Eur Food Res Technol 229- 645.
  • Ngadze E, Icishahayo D,Coutinho TA, van der Waals JE, 2012. Role of polyphenol oxidase peroxidase phenylalanine ammonia lyase chlorogenic acid and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96: 186-192.
  • Nguyen DMC, Seo DJ, Kim K, Yv Park RD, 2013. Nematicidal activity of 34-dihydroxybenzoic acid purifed from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microb Pathog 59: 52–59.
  • Nguyen XH, Naing KW, Lee YS, Moon JH, Lee JH, Kim KY, 2015. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J Basic Microb55: 625-634.
  • Nierhaus D, Kinzel H, 1971. Comparative investigations on organic acids in leaves of higher plants. ZPfl anzenphysiol64: 107- 123.
  • Paré PW, Tumlinson JH, 1999. Plant volatiles as a defense against insect herbivores. Plant physiol 121: 325-332.
  • Peer WA, Murphy AS, 2007. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12: 556-563.
  • Pennings SC, Callaway RM, 2002. Parasitic plants: parallels and contrasts with herbivores.Oecologia131:479-489.
  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Wolters S, 2009. Evolution of rosmarinic acid biosynthesis. Phytochemistry70: 1663-1679.
  • Ravin H, Andary C,Kovacs G,Molgaard P, 1989. Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem Syst Ecol 17: 175–184.
  • Runyon JB, Mescher MC, De Moraes CM, 2008. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores. Plant Physiol 146: 987-995.
  • Sahm A,Czygan FC, Proksch P, 1993. Resistance of tomato, Lycopersicon esculentum to dodder, (Cuscuta reflexa). In International Symposium on Natural Phenols in Plant Resistance 381: 650-653.
  • Schmitz-Hoerner R,Weissenbock G, 2003. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry64: 243–255.
  • Schnitzler M, Petereit F, Nahrstedt A, 2007. Trans-Aconitic acid glucosylflavones and hydroxycinnamoyltartaric acids from the leaves of Echinodorus grandiflorus ssp. aureus a Brazilian medicinal plant. Revista Brasileira de farmacognosia 17: 149- 154.
  • Serghini K,de Luque AP, Castejón‐Muñoz M,García‐Torres L,Jorrín JV, 2001. Sunflower, (Helianthus annuus) L. response to broomrape, (Orobanche cernua) Loefl. parasitism: induced synthesis and excretion of 7‐hydroxylated simple coumarins. J Expe Bot 52: 2227-2234.
  • Soares MS, da Silva DF, Forim MR, Fernandes JB, Vieira PC, Silva DB, Machado MA, 2015. Quantifcation and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry.
  • Stewart GR, Press MC, 1990. The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant phys 41: 127-151.
  • Syafni N, Putra DP, Arbain D, 2012. 34-Dihydroxybenzoic acid and 34-dihydroxybenzaldehyde from the fern Trichomanes chinense; isolation antimicrobial and antioxidant properties. Indo J Chem 12: 273–278.
  • Taglialatela-Scafati O,Pollastro F, Cicione L, Chianese G, Bellido ML, Munoz E, Appendino G, 2012. Stat-3 inhibitory bisabolanes from Carthamus glaucus. J Nat Prod 75: 453-458.
  • Visser JH, Dorr I, 1986. The haustorium In Parasitic weeds in agriculture1 Striga, ed Musselman L J. CRC Press Inc Boca Raton, (Bell E.A. and Charlwood B.V eds) 329–395.
  • Vurro E, Ruotolo R, Ottonello S, Elviri L, Maffni M, Falasca G, di Toppi LS, 2011. Phytochelatins govern zinc/copper homeostasis and cadmium detoxifcation in Cuscuta campestris parasitizing Daucus carota. Environ Exp Bot7: 26-33.
  • Walters DR. Why Do Plants Need Defenses? Plant Defense 1-14. Weir TL, Park SW, Vivanco JM, 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7: 472–479.
  • Westwood JH, Yoder JI, Timko MP, Depamphilis CW, 2010. The evolution of parasitism in plants. Trends Plant Sci 15: 227– 235.
  • Williams KM, Martin WE, Smith J, Williams BS, 2012. Production of protocatechuic acid in Bacillus thuringiensis ATCC33679. Int J Mol Sci 13: 3765–3772.

Cuscuta babylonica Aucher (küsküt) parazitliğinin Carthamus glaucus Bieb.subsp. glaucus’un Fenolik İçeriği Üzerine Etkisi

Yıl 2016, Cilt: 6 Sayı: 4, 31 - 39, 31.12.2016

Öz

Küsküt türleri, ihtiyaçları olan tüm su ve organik maddeleri konak bitkiden alan holoparazit bitkilerdir.
Konak bitkiler genellikle bu bitkilerin saldırılarına karşı çeşitli fenolik bileşikler sentezlerler. Bu çalışmada konak
bitki olarak kullanılan
Carthamus glaucus Bieb. subsp. glaucus (Compositae) C.babylonica parazitliliğinin prostat
kanseri ile direkt ilişkili olan STAT-3 genini inhibe eden çeşitli bileşikleri içeren çeşitli bir bitkidir. Çalışmada,
C. Glaucus’un fenolik bileşen içeriği üzerine olan etkisi araştırılmıştır. Parazit bitki ile enfekte olan ve olmayan
C.glaucus bitkilerinin fenolik bileşen içerikleri LC/MS-MS ile analiz edilmiştir. Sonuçlar, savunma kimyasalları
olarak bilinen kuinik asit, gallik asit, tr-kaffeik asit, hiperosid, kuersetinve naringenin içeriklerinde bir artış olduğunu
göstermiştir.Bunun yanında tr-akonitik asit, vanillin, hesperidin, 4-OH-benzoik asit, salisilik asit ve kaemferol
içerikleri küsküt bulaşması sonrası azalmıştır.
  

Kaynakça

  • Ananthakrishnan TN, Daniel Wesley S, John Peter A, Marimuthu S, 1994. Ecological interactions of Helicoverpa armigera and its natural enemies. Int J Ecol Environ Sci 20: 317-331.
  • Antonova TS, terBorg ST, 1996. The role of peroxidase in the resistance of sunflower against Orobanche cumane in Russia. Weed Research 36: 113-121.
  • Arnau M, Renaudin S, Fer A, 1996. Investigations into the cellular and biochemical events involed in the resistance of a legume, (Phaseolus vulgaris) to a parasitic higher plant, Cuscuta reflexa. M.T. Moreno J.I 592-596.
  • Arrantlrakrislman TN, 1997. Gallic and salicylic acids: sentinels of plant defence against insects. Current Science 73.
  • Baytop T, 1997. Türkçe bitki adları sözlüğü; Türk Dil Kurumu Basımevi: Ankara Türkiye p 578.
  • Beckman CH, 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant P 57: 101–110.
  • Bennett RN, Wallsgrove RM, 1994. Secondary metabolites in plant defense mechanisms. New Phytol 127: 617-633.
  • Boudet A, 2007. Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722–2735.
  • Bouwmeeste HJ, Matusova R, Zhongkui S, Beale MH, 2003. Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6: 358-364.
  • Chou CH, 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev in Plant Sci 18: 609– 636.
  • Clé C, Hill LM, Niggewe R, Martin CR, Guisez Y, Prinsen E, Jansen MAK, 2008. Modulation of chlorogenic acid biosynthesisin Solanum lycopersicum; consequences for phenolic accumulationand UV-tolerance. Phytochemistry 69: 2149–2156.
  • Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, Adam LR, 2012. Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res3 191.
  • Dakora FD, Phillips DA, 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial defnitions of phytoalexins. Physiol Mol Plant P49 1–20.
  • Dangl JL, Jones JDG, 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.
  • Delsignore A, Romeo F, Giaccio M, 1997. Content of phenolic substances in basidiomycetes. Mycol Res 101: 552–556.
  • Deng F, Aoki M, Yogo Y, 2004. Effect of naringenin on the growth and lignin biosynthesis of gramoineous plants. Weed Biol Manag 4: 49–55.
  • Dmitriev AP, 2003. Signal molecules for plant defense responses to biotic stress. Russ J of Plant Physl 50: 417– 425.
  • El-Akkad SS, Hassan E A, Ali M E, 2002. Phenolic acid changes during Orobanche parasitism on faba bean and some other hosts. Egypt J Biol 4: 37-44.
  • Ertas A, Boga M, Yılmaz MA, Yesil Y, Hasimi N, Kaya MS, Kolak U, 2014. Chemical compositions by using LC-MS/MS and GC-MS and biological activities of Sedum sediforme, Jacq. Pau. J Agr Food Chem 62: 4601-4609.
  • Farah AF, 2007. Resistance of some plant species to feld dodder, Cuscuta campestris. African corp science conference Proceedings 8: 913-917.
  • Farah AF, 2010. The response of two legume crops, hyacinth bean and kidney bean to the parasitism of feld dodder, (Cuscuta campestris).
  • Furuhashi T, Fragner L, Furuhashi K, Valledor L, Sun X, Weckwerth W, 2012. Metabolite changes with induction of Cuscuta haustorium and translocation from host plants. J Plant Interact 7: 84-93.
  • Furuhashi T, Furuhashi K, Weckwerth W, 2011. The parasitic mechanism of the holostem parasitic plant Cuscuta. J Plant Interact 6: 207-219.
  • Gargallo-Garriga A, Sardans JV, Pérez-Trujillo M, Parella T, Seco R, Filella I, Peñuelas J, 2010. Metabolomic responses of Quercus ilex seedlings to wounding simulating herbivory. SMASH Conference Santiago de Compostela Spain.
  • Glodwassser Y, Hershenhorn HJ, Plalhire D, Kleifeld Y, Rubin B, 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol Mol Plant 54: 87-96.
  • Harborne JB, 1980. Plant phenolics. In: Encyclopedia of Plant physiol
  • Harvell KP, Bosland PW, 1997. The environment produces a signifcant effect on pungency of chiles. Hort Science 32: 1292–1297.
  • Hückelhoven R, 2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45: 101–127.
  • Iizuka L, Koıke S, Mıtzutanı J, 1974. Antibacterial substances in feces of silkworm larvae reared on mulberry leaves. Agric Biol Chem 38: 1549-1550.
  • Inderjit S, Gross E, 2000. Plant phenolics: potential role in aquatic and terrestrial ecosystems. In Polyphenols, Martens S Treutter D and Forkmann G eds. 206–234.
  • Jwa NS, Agrawal GS, Tamogami S, Yonekura M, Han O, Iwahashı H, Rakwal R, 2006. Role of defense/stress-related marker genes proteins and secondary metabolites in defning rice selfdefense mechanisms. Plant Physiol Biochem 44: 261-273.
  • Kaiser B, Vogg G, Fürst UB, Albert M, 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Frontiers in plant science 6.
  • Karban R, Baldwin IT, 1997. Induced Responses to Herbivory. University of Chicago Press Chicago
  • Khurana JP, Cleland CF, 1992. Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain Lemna paucicostata LP6. Plant physiol 100: 1541-1546.
  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, 2000. Colloquium paper: nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97: 8849–8855.
  • Koike S, Hzuka T, Mızutanl J, 1979. Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenic Streptococcusfaecalis AD-4. Agric Biol Chem 43: 1727-1731.
  • Korkina LG, 2007. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53: 15-25.
  • Krylov SN, Krylova SM, Chebotarev IG, Chebotareva AB, 1994. Inhibition of enzymatic indole-3-acetic acid oxidation by phenols. Phytochemistry 36: 263–267.
  • Kuijt, JToth R, 1976. Ultrastructure of angiosperm haustoria A review. Annuals of Botany 401:121-1130
  • Lattanzio V, Lattanzio VM, Cardinali A, 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 661: 23-67.
  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG, 2009. Identifcation of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150: 1567- 1575.
  • Likić S,Šola I,Ludwig-Müller J,Rusak G, 2014. Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana. Eur J Plant Pathol 138: 257-271.
  • Lindroth RL, Batzli GO, 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles, (Microtus ochrogaster).J Chem Ecol 10: 229-244.
  • Link KP, Angell HR, Walker JC, 1929. Isolation of protocatechuic acid from pigmented onion scales and its signifcance in relation to disease resistance in onions. J Biol Chem 81: 369– 375.
  • Liu CL, Wang JM, Chu CY, Cheng MT, 2002. In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxideinduced rat hepatotoxicity. Food Chem Toxicol 40: 635–641. Loake G, Grant M, 2007. Salicylic acid in plant defence–the players and protagonists. Curr Opin Plant Biol 10: 466–472.
  • Lorenc-Kukula K, Jafra S, Oszmıánskı I, Szopa J, 2005. Ectopic Expression of Anthocyanin 5-O-Glucosyltransferase in Potato Tubers Causes Increased Resistance to Bacteria. J Agrie Food Chem 5: 3 272-281.
  • Martínez C,Pons E, Prats G, León J, 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal 37: 209-217.
  • Mathesius U, 2001. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Expe Bot 52: 419–426.
  • McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, de Pamphilis CW, 2007. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta, (Convolvulaceae). BMC Biol. 5: 1-19.
  • Miles PW, 1999. Aphid saliva. Biol Rev Camb Philos Soc 74: 41– 85.
  • Mishra S, Sanwal GG, 1995. Changes in lipid composition of Brassica siliquae upon infection by Cuscuta. J Plant Physiol 146: 303-306.
  • Mumford FE, Smith DH, Castle JE, 1961. An inhibitor of indoleacetic acid oxidase from pea tips. Plant physiol 36: 752–756.
  • Murthy PS, 2009. Eur Food Res Technol 229- 645.
  • Ngadze E, Icishahayo D,Coutinho TA, van der Waals JE, 2012. Role of polyphenol oxidase peroxidase phenylalanine ammonia lyase chlorogenic acid and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96: 186-192.
  • Nguyen DMC, Seo DJ, Kim K, Yv Park RD, 2013. Nematicidal activity of 34-dihydroxybenzoic acid purifed from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microb Pathog 59: 52–59.
  • Nguyen XH, Naing KW, Lee YS, Moon JH, Lee JH, Kim KY, 2015. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J Basic Microb55: 625-634.
  • Nierhaus D, Kinzel H, 1971. Comparative investigations on organic acids in leaves of higher plants. ZPfl anzenphysiol64: 107- 123.
  • Paré PW, Tumlinson JH, 1999. Plant volatiles as a defense against insect herbivores. Plant physiol 121: 325-332.
  • Peer WA, Murphy AS, 2007. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12: 556-563.
  • Pennings SC, Callaway RM, 2002. Parasitic plants: parallels and contrasts with herbivores.Oecologia131:479-489.
  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Wolters S, 2009. Evolution of rosmarinic acid biosynthesis. Phytochemistry70: 1663-1679.
  • Ravin H, Andary C,Kovacs G,Molgaard P, 1989. Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem Syst Ecol 17: 175–184.
  • Runyon JB, Mescher MC, De Moraes CM, 2008. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores. Plant Physiol 146: 987-995.
  • Sahm A,Czygan FC, Proksch P, 1993. Resistance of tomato, Lycopersicon esculentum to dodder, (Cuscuta reflexa). In International Symposium on Natural Phenols in Plant Resistance 381: 650-653.
  • Schmitz-Hoerner R,Weissenbock G, 2003. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry64: 243–255.
  • Schnitzler M, Petereit F, Nahrstedt A, 2007. Trans-Aconitic acid glucosylflavones and hydroxycinnamoyltartaric acids from the leaves of Echinodorus grandiflorus ssp. aureus a Brazilian medicinal plant. Revista Brasileira de farmacognosia 17: 149- 154.
  • Serghini K,de Luque AP, Castejón‐Muñoz M,García‐Torres L,Jorrín JV, 2001. Sunflower, (Helianthus annuus) L. response to broomrape, (Orobanche cernua) Loefl. parasitism: induced synthesis and excretion of 7‐hydroxylated simple coumarins. J Expe Bot 52: 2227-2234.
  • Soares MS, da Silva DF, Forim MR, Fernandes JB, Vieira PC, Silva DB, Machado MA, 2015. Quantifcation and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry.
  • Stewart GR, Press MC, 1990. The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant phys 41: 127-151.
  • Syafni N, Putra DP, Arbain D, 2012. 34-Dihydroxybenzoic acid and 34-dihydroxybenzaldehyde from the fern Trichomanes chinense; isolation antimicrobial and antioxidant properties. Indo J Chem 12: 273–278.
  • Taglialatela-Scafati O,Pollastro F, Cicione L, Chianese G, Bellido ML, Munoz E, Appendino G, 2012. Stat-3 inhibitory bisabolanes from Carthamus glaucus. J Nat Prod 75: 453-458.
  • Visser JH, Dorr I, 1986. The haustorium In Parasitic weeds in agriculture1 Striga, ed Musselman L J. CRC Press Inc Boca Raton, (Bell E.A. and Charlwood B.V eds) 329–395.
  • Vurro E, Ruotolo R, Ottonello S, Elviri L, Maffni M, Falasca G, di Toppi LS, 2011. Phytochelatins govern zinc/copper homeostasis and cadmium detoxifcation in Cuscuta campestris parasitizing Daucus carota. Environ Exp Bot7: 26-33.
  • Walters DR. Why Do Plants Need Defenses? Plant Defense 1-14. Weir TL, Park SW, Vivanco JM, 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7: 472–479.
  • Westwood JH, Yoder JI, Timko MP, Depamphilis CW, 2010. The evolution of parasitism in plants. Trends Plant Sci 15: 227– 235.
  • Williams KM, Martin WE, Smith J, Williams BS, 2012. Production of protocatechuic acid in Bacillus thuringiensis ATCC33679. Int J Mol Sci 13: 3765–3772.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Bölüm Biyoloji / Biology
Yazarlar

Hilal Surmuş

Hasan Çetin Özen Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2016
Gönderilme Tarihi 9 Mayıs 2016
Kabul Tarihi 30 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 6 Sayı: 4

Kaynak Göster

APA Surmuş, H., & Özen, H. Ç. (2016). The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Journal of the Institute of Science and Technology, 6(4), 31-39.
AMA Surmuş H, Özen HÇ. The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2016;6(4):31-39.
Chicago Surmuş, Hilal, ve Hasan Çetin Özen. “The Effect of Cuscuta Babylonica Aucher (Cuscuta) Parasitism on the Phenolic Contents of Carthamus Glaucus Bieb.subsp. Glaucus”. Journal of the Institute of Science and Technology 6, sy. 4 (Aralık 2016): 31-39.
EndNote Surmuş H, Özen HÇ (01 Aralık 2016) The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Journal of the Institute of Science and Technology 6 4 31–39.
IEEE H. Surmuş ve H. Ç. Özen, “The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus”, Iğdır Üniv. Fen Bil Enst. Der., c. 6, sy. 4, ss. 31–39, 2016.
ISNAD Surmuş, Hilal - Özen, Hasan Çetin. “The Effect of Cuscuta Babylonica Aucher (Cuscuta) Parasitism on the Phenolic Contents of Carthamus Glaucus Bieb.subsp. Glaucus”. Journal of the Institute of Science and Technology 6/4 (Aralık 2016), 31-39.
JAMA Surmuş H, Özen HÇ. The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Iğdır Üniv. Fen Bil Enst. Der. 2016;6:31–39.
MLA Surmuş, Hilal ve Hasan Çetin Özen. “The Effect of Cuscuta Babylonica Aucher (Cuscuta) Parasitism on the Phenolic Contents of Carthamus Glaucus Bieb.subsp. Glaucus”. Journal of the Institute of Science and Technology, c. 6, sy. 4, 2016, ss. 31-39.
Vancouver Surmuş H, Özen HÇ. The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Iğdır Üniv. Fen Bil Enst. Der. 2016;6(4):31-9.