Fatty acid composition in head, thorax, and abdomen of male and female specimens of the solitary wasp species Sphex flavipennis was investigated. Samples were collected from their natural habitats in Tokat province (Turkey). It is determined that, unsaturated fatty acids are high in females whereas saturated fatty acids are high in males. Total unsaturated fatty acids of body parts and sexes were found as: 80.19 % in female head, 75.73 % in male head; 81.57 % in female thorax, 81.43 % in male thorax; 79.03 % in female abdomen, 74.68 % in male abdomen. Total saturated fatty acids of body parts and sexes were found as: 19.57 % in female head but 24.67 % in male head; 14.83 % in female thorax, 16.91 % in male thorax; 19.77 % in female abdomen, 22.78 % in male abdomen. The highest amounts of fatty acids are oleic acid and linoleic acid ranging between 27.68 % - 52.65 % and 19.00 % - 37.36 %, respectively. Differences between body parts as well as male and female insects are due to diverse physiological and metabolic functions
Arrese EL, Soulages JL, 2010. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol., 55: 207-225.
Attygalle AB, Blankespoor CL, Eisner T, Meinwald J, 1994. Biosynthesis of a defensive insect alkaloid: Epilachnene from oleic acid and serine. Proc. Natl. Acad. Sci., 91: 12790-12793.
AOAC 1990. Official Methods of Analysis. 15th AOAC International, Washington, DC.
Barlow JS, 1964. Fatty Acids In Some Insect And Spider Fats. Canadian journal of Biochemistry, 42 (10): 1365-1374.
Beenakkers AMT, Van Der Horst DJ, Van Marrewijk WJA, 1984. Insect Flight Muscle Metabolism. Insect Biochem., 14 (3): 243-260.
Beenakkers, A.M.T., Van der Horst, D.J., Van Marrewijk, J.A., Insect lipids and lipoproteins and their role in physiological processes. Prog Lipid Res 24(1): 19-67, 1985.
Blomquist, G.J., Dillwith, J.W., Cuticular lipids, pp. 117-154. In: G.A. Kerkut and L.I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 10. Pergamon Press, Oxford, England, 1985.
Bohart RM, Menke AS, 1976. Sphecid Wasps of the World. A generic revision. University of California Press, Berkeley, Los Angeles, London. IX+695 p.
Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA, 2001. Fat Metabolism In Insects. Annu. Rev. Nutr., 21: 23–46.
Canavoso LE, Stariolo R, Rubiolo ER, 2003. Flight Metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the Role of Carbohydrates and Lipids. Mem Inst Oswaldo Cruz, Rio de Janeiro, 98 (7): 909-914.
Dooremalen C, Ellers J, 2010. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. Journal of Insect Physiology, 56: 178–184.
Downer, R.G.H., Lipid metabolism, pp. 77-113. In G.A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 10. Pergamon, Oxford, England, 1985.
Fast PG, 1964. Insect Lipids: A Review. – Memoirs of the Entomological Society of Canada, 96: 5-50.
Gilbert LI, Chino H, 1974. Transport of lipids in insects. J. Lipid Res., 15: 439-456.
Gołebiowski M, Urbanek A, Oleszczaka A, Dawgul M, Kamysz W, Bogus MI, Stepnowski P, 2013. The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiol Res., 169 (4): 279-286.
IUPAC, 1988. International Union of Pure and Applied Chemistry, Standard Methods and Applications. Marcel Dekker, New York.
Murata M, Tojo S, 2002. Utilization of lipid for flight and reproduction in Spodoptera litura (Lepidoptera: Noctuidae) Eur. J. Entomol., 99: 221-224.
Norusis MJ, 2002. SPSS Base 11.5 User’s Guide, (Chicago, IL, SPSS Inc.).
Nurullahoğlu ZÜ, Uçkan F, Sak O, Ergin E, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized host. Annals of the Entomological Society of America, 97: 1000-1006.
Stanley D, Haas E, Miller J, 2012. Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs. Insects, 3: 492-510.
Stanley-Samuelson, D.W., Jurenka, R.A., Crips, C., Blomquist, G.J., de Renobales, M., Fatty acids in insects: composition, metabolism and biological significance. Arch Insect Biochem Physiol 9(1): 1-33, 1988.
Stewart-Jones A, Stirrup TJ, Hodges RJ, Farman DI, Hall DR, 2009. Analysis of free fatty acids in food substrates and in the dust and frass of stored-product pests: Potential for species discrimination? Journal of Stored Products Research, 45: 119–124.
Sushchik NN, Yurchenko YA, Gladyshev MI, Belevich OE, Kalachova GS, Kolmakova AA, 2013. Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect Science, 20: 585–600.
Thompson SN, 1973. A Review And Comparative Characterization of the Fatty Acid Compositions of Seven Insect Orders. Comp. Biochem. Physiol., Vol. 45B: 467-482.
Thompson SN, Barlow JS, 1974. The Fatty Acid Composition of Parasitic Hymenoptera and its Possible Biological Significance. Annals of the Entomological Society of America, 67(4): 627-632.
Tunaz H, Park Y, Büyükgüzel K, Bedick JC, Aliza ARN, Stanley DW, 2003. Eicosanoids in Insect Immunity: Bacterial Infection Stimulates Hemocytic Phospholipase A2 Activity in Tobacco Hornworms. Archives of Insect Biochemistry and Physiology, 52: 1–6.
Uscian JM, Stanley-Samuelson DW, 1994. Fatty acid compositions of phospholipids and triacylglycerols from selected terrestrial arthropods. Comp. Biochem. Physiol., 107B (3): 371-379.
Yocum GD, Buckner JS, Fatland CL, 2011. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata. Comparative Biochemistry and Physiology, Part B 159: 163-170.
Soliter Yaban Arısı, Sphex flavipennis (Insecta: Hymenoptera)’in Eşey ve Vücut Kısımlarında Yağ Asit Kompozisyonu
Soliter yaban arısı Sphex flavipennis türüne ait erkek ve dişi örneklerin baş, toraks ve abdomen kısımlarında yağ asidi kompozisyonu araştırıldı. Örnekler Tokat ilinde doğal habitatlarından toplandı. Çalışmamızda doymamış yağ asitleri dişilerde, doymuş yağ asitleri ise erkeklerde yüksek bulunmuştur. Eşeyler ve vücut kısımlarına göre toplam doymamış yağ asitleri şu şekilde bulunmuştur: dişinin başında % 80.19, erkeğin başında % 75.73; dişinin toraksında % 81.57, erkeğin toraksında % 81.43; dişinin abdomeninde %79.03, erkeğin abdomeninde % 74.68. Toplam doymuş yağ asitleri şu şekilde bulunmuştur: dişinin başında % 19.57, erkeğin başında % 24.67; dişinin toraksında % 14.83, erkeğin toraksında % 16.91 in; dişinin abdomeninde % 19.77, erkeğin abdomeninde % 22.78. Yağ asitleri arasında en yüksekleri oleik asit ve linoleik asittir, miktarları sırasıyla 27.68% - 52.65% ve 19.00% - 37.36% arasında değişmektedir. Vücut kısımları ile erkek-dişi arasındaki farklılıklar çeşitli fzyolojik ve metabolik fonksiyonlardan kaynaklanmaktadır.
Arrese EL, Soulages JL, 2010. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol., 55: 207-225.
Attygalle AB, Blankespoor CL, Eisner T, Meinwald J, 1994. Biosynthesis of a defensive insect alkaloid: Epilachnene from oleic acid and serine. Proc. Natl. Acad. Sci., 91: 12790-12793.
AOAC 1990. Official Methods of Analysis. 15th AOAC International, Washington, DC.
Barlow JS, 1964. Fatty Acids In Some Insect And Spider Fats. Canadian journal of Biochemistry, 42 (10): 1365-1374.
Beenakkers AMT, Van Der Horst DJ, Van Marrewijk WJA, 1984. Insect Flight Muscle Metabolism. Insect Biochem., 14 (3): 243-260.
Beenakkers, A.M.T., Van der Horst, D.J., Van Marrewijk, J.A., Insect lipids and lipoproteins and their role in physiological processes. Prog Lipid Res 24(1): 19-67, 1985.
Blomquist, G.J., Dillwith, J.W., Cuticular lipids, pp. 117-154. In: G.A. Kerkut and L.I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 10. Pergamon Press, Oxford, England, 1985.
Bohart RM, Menke AS, 1976. Sphecid Wasps of the World. A generic revision. University of California Press, Berkeley, Los Angeles, London. IX+695 p.
Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA, 2001. Fat Metabolism In Insects. Annu. Rev. Nutr., 21: 23–46.
Canavoso LE, Stariolo R, Rubiolo ER, 2003. Flight Metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the Role of Carbohydrates and Lipids. Mem Inst Oswaldo Cruz, Rio de Janeiro, 98 (7): 909-914.
Dooremalen C, Ellers J, 2010. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. Journal of Insect Physiology, 56: 178–184.
Downer, R.G.H., Lipid metabolism, pp. 77-113. In G.A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 10. Pergamon, Oxford, England, 1985.
Fast PG, 1964. Insect Lipids: A Review. – Memoirs of the Entomological Society of Canada, 96: 5-50.
Gilbert LI, Chino H, 1974. Transport of lipids in insects. J. Lipid Res., 15: 439-456.
Gołebiowski M, Urbanek A, Oleszczaka A, Dawgul M, Kamysz W, Bogus MI, Stepnowski P, 2013. The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiol Res., 169 (4): 279-286.
IUPAC, 1988. International Union of Pure and Applied Chemistry, Standard Methods and Applications. Marcel Dekker, New York.
Murata M, Tojo S, 2002. Utilization of lipid for flight and reproduction in Spodoptera litura (Lepidoptera: Noctuidae) Eur. J. Entomol., 99: 221-224.
Norusis MJ, 2002. SPSS Base 11.5 User’s Guide, (Chicago, IL, SPSS Inc.).
Nurullahoğlu ZÜ, Uçkan F, Sak O, Ergin E, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized host. Annals of the Entomological Society of America, 97: 1000-1006.
Stanley D, Haas E, Miller J, 2012. Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs. Insects, 3: 492-510.
Stanley-Samuelson, D.W., Jurenka, R.A., Crips, C., Blomquist, G.J., de Renobales, M., Fatty acids in insects: composition, metabolism and biological significance. Arch Insect Biochem Physiol 9(1): 1-33, 1988.
Stewart-Jones A, Stirrup TJ, Hodges RJ, Farman DI, Hall DR, 2009. Analysis of free fatty acids in food substrates and in the dust and frass of stored-product pests: Potential for species discrimination? Journal of Stored Products Research, 45: 119–124.
Sushchik NN, Yurchenko YA, Gladyshev MI, Belevich OE, Kalachova GS, Kolmakova AA, 2013. Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect Science, 20: 585–600.
Thompson SN, 1973. A Review And Comparative Characterization of the Fatty Acid Compositions of Seven Insect Orders. Comp. Biochem. Physiol., Vol. 45B: 467-482.
Thompson SN, Barlow JS, 1974. The Fatty Acid Composition of Parasitic Hymenoptera and its Possible Biological Significance. Annals of the Entomological Society of America, 67(4): 627-632.
Tunaz H, Park Y, Büyükgüzel K, Bedick JC, Aliza ARN, Stanley DW, 2003. Eicosanoids in Insect Immunity: Bacterial Infection Stimulates Hemocytic Phospholipase A2 Activity in Tobacco Hornworms. Archives of Insect Biochemistry and Physiology, 52: 1–6.
Uscian JM, Stanley-Samuelson DW, 1994. Fatty acid compositions of phospholipids and triacylglycerols from selected terrestrial arthropods. Comp. Biochem. Physiol., 107B (3): 371-379.
Yocum GD, Buckner JS, Fatland CL, 2011. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata. Comparative Biochemistry and Physiology, Part B 159: 163-170.
Gülmez, Y., & Elmastaş, M. (2017). Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera). Journal of the Institute of Science and Technology, 7(1), 73-78.
AMA
Gülmez Y, Elmastaş M. Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera). Iğdır Üniv. Fen Bil Enst. Der. Mart 2017;7(1):73-78.
Chicago
Gülmez, Yaşar, ve Mahfuz Elmastaş. “Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera)”. Journal of the Institute of Science and Technology 7, sy. 1 (Mart 2017): 73-78.
EndNote
Gülmez Y, Elmastaş M (01 Mart 2017) Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera). Journal of the Institute of Science and Technology 7 1 73–78.
IEEE
Y. Gülmez ve M. Elmastaş, “Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera)”, Iğdır Üniv. Fen Bil Enst. Der., c. 7, sy. 1, ss. 73–78, 2017.
ISNAD
Gülmez, Yaşar - Elmastaş, Mahfuz. “Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera)”. Journal of the Institute of Science and Technology 7/1 (Mart 2017), 73-78.
JAMA
Gülmez Y, Elmastaş M. Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera). Iğdır Üniv. Fen Bil Enst. Der. 2017;7:73–78.
MLA
Gülmez, Yaşar ve Mahfuz Elmastaş. “Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera)”. Journal of the Institute of Science and Technology, c. 7, sy. 1, 2017, ss. 73-78.
Vancouver
Gülmez Y, Elmastaş M. Fatty Acid Composition of Sexes and Body Parts in a Solitary Wasp, Sphex flavipennis (Insecta: Hymenoptera). Iğdır Üniv. Fen Bil Enst. Der. 2017;7(1):73-8.