Araştırma Makalesi
BibTex RIS Kaynak Göster

Zaman Konum Kesirli Liouville ve Sine-Gordon Denklemlerinin Yeni Dalga Çözümleri

Yıl 2018, Cilt: 8 Sayı: 4, 295 - 303, 30.12.2018
https://doi.org/10.21597/jist.412948

Öz

Bu makalede, yazarlar alt denklem yöntemi olarak adlandırılan güvenilir bir yöntem kullanarak zaman-uzay

kesirli Lioville ve Sine-Gordon denklemlerinin yeni dalga çözümlerini elde ettiler. Kullanılan denklemlerde mevcut

olan kesirli mertebeden türevler, conformable anlamında ele alınmıştır. Kolay, uıygulanabilir olan conformable

türevi, bilinen türevin sağladığı Leibniz Kuralı, bölüm kuralı, zincir kuralı gibi kuralları sağlar. Bu özellikler

conformable kesirli türeve diğer popüler türevler karşısında bir avantaj sağlamaktadır.

Kaynakça

  • Abdeljawad T, (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279:57-66.
  • Cenesiz Y, Tasbozan O, Kurt A, (2017). Functional Variable Method for conformable fractional modifed KdV-ZK equation and Maccari system. Tbilisi Mathematical Journal, 10: 117-125.
  • Hashemi MS, 2018. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos, Solitons and Fractals, 107: 161-169.
  • Hosseini K, Manafian J, Samadani F, Foroutan M, Mirzazade, M, Zhou Q, (2017). Resonant Optical Solitons with Perturbation Terms and Fractional Temporal Evolution Using Improved tanh( (n) / 2)-Expansion Method and Exp Function Approach. Optik-International Journal for Light and Electron Optics, 158:933-939.
  • Ilie M, Biazar J, Ayati Z, (2018). The first integral method for solving some conformable fractional differential equations. Optical and Quantum Electronics, 50: 55.
  • Kaplan M, Ozer MN, (2018). Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation. Optical and Quantum Electronics, 50:2.
  • Khalil R, Horani A, Yousef A, Sababheh M, 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264: 65-70.

New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations

Yıl 2018, Cilt: 8 Sayı: 4, 295 - 303, 30.12.2018
https://doi.org/10.21597/jist.412948

Öz

In this paper, the authors discussed the new wave solutions of time-space fractional Liouville and

Sine-Gordon equations by using a reliable analytical method called sub-equation method. The fractional derivatives

of considered equations are handled in conformable sense. Conformable derivative which is an easy and applicable

type of fractional derivative, satisfies basic properties of known derivative with integer order such as Leibniz

rule, quotient rule, chain rule. These properties of conformable derivative superior to other popular definitions on

obtaining analytical solutions of fractional equations.

Kaynakça

  • Abdeljawad T, (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279:57-66.
  • Cenesiz Y, Tasbozan O, Kurt A, (2017). Functional Variable Method for conformable fractional modifed KdV-ZK equation and Maccari system. Tbilisi Mathematical Journal, 10: 117-125.
  • Hashemi MS, 2018. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos, Solitons and Fractals, 107: 161-169.
  • Hosseini K, Manafian J, Samadani F, Foroutan M, Mirzazade, M, Zhou Q, (2017). Resonant Optical Solitons with Perturbation Terms and Fractional Temporal Evolution Using Improved tanh( (n) / 2)-Expansion Method and Exp Function Approach. Optik-International Journal for Light and Electron Optics, 158:933-939.
  • Ilie M, Biazar J, Ayati Z, (2018). The first integral method for solving some conformable fractional differential equations. Optical and Quantum Electronics, 50: 55.
  • Kaplan M, Ozer MN, (2018). Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation. Optical and Quantum Electronics, 50:2.
  • Khalil R, Horani A, Yousef A, Sababheh M, 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264: 65-70.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Orkun Taşbozan 0000-0001-5003-6341

Ali Kurt Bu kişi benim 0000-0002-0617-6037

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 5 Nisan 2018
Kabul Tarihi 26 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 4

Kaynak Göster

APA Taşbozan, O., & Kurt, A. (2018). New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Journal of the Institute of Science and Technology, 8(4), 295-303. https://doi.org/10.21597/jist.412948
AMA Taşbozan O, Kurt A. New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2018;8(4):295-303. doi:10.21597/jist.412948
Chicago Taşbozan, Orkun, ve Ali Kurt. “New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations”. Journal of the Institute of Science and Technology 8, sy. 4 (Aralık 2018): 295-303. https://doi.org/10.21597/jist.412948.
EndNote Taşbozan O, Kurt A (01 Aralık 2018) New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Journal of the Institute of Science and Technology 8 4 295–303.
IEEE O. Taşbozan ve A. Kurt, “New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 4, ss. 295–303, 2018, doi: 10.21597/jist.412948.
ISNAD Taşbozan, Orkun - Kurt, Ali. “New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations”. Journal of the Institute of Science and Technology 8/4 (Aralık 2018), 295-303. https://doi.org/10.21597/jist.412948.
JAMA Taşbozan O, Kurt A. New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:295–303.
MLA Taşbozan, Orkun ve Ali Kurt. “New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations”. Journal of the Institute of Science and Technology, c. 8, sy. 4, 2018, ss. 295-03, doi:10.21597/jist.412948.
Vancouver Taşbozan O, Kurt A. New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(4):295-303.