Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Antioxidant Molecules in Green Tea by Quantum Chemical Approaches

Yıl 2018, Cilt: 8 Sayı: 4, 55 - 65, 30.12.2018
https://doi.org/10.21597/jist.420354

Öz

A strong antioxidant, green tea, has antimutagenic, anticarcinogenic and antibacterial properties.

Among the multiple components of green tea, flavonoids are a major contributor to the antioxidant activity. In

this study, the molecules of gallocatechin, kaempferinin, strictinin, theaflavin and isoviteksin molecules, which

are OH groups in the green tea plant, are emphasized. The three major antioxidant mechanisms HAT, SET-PT and

SPLET have been examined to analyze the antioxidative capacity of the compounds studied. Calculations were

performed using the Gaussian09 program M062X/6-311+Gdp and the molecular descriptors using HF/6-31++Gdp

methods. The SPLET mechanism in the gas phase and the SET-PT mechanism are preferred in the ethanol phase.

The antioxidant activity in the gas phase is gallocatechin>kaempferitin>isoviteksin> strictinin>theaflavin and in

the ethanol phase it is isoviteksin>strictinin>gallocatechin> kaempferitin>theaflavin.

Kaynakça

  • 1. Özcan O, Erdal H, Çakırca G, Yönden Z, 2015. Oksidatif Stres ve Hücre İçi Lipit , Protein ve DNA Yapıları Üzerine Etkileri. Journal of Clinical and Experimental Investigations , 6 (3): 331-336
  • 2. Reed DJ, 1995. Toxicity of Oxygen İn Molecular And Cellular Mechanisms of Toxicity. CRC Press, pp. 35–68, Boca Raton- USA.
  • 3. Younes M, 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International , 67 (4): 1371 – 1380.
  • 4. Olszanecki R, Gȩbska A, Kozlovski VI, Gryglewski RJ, 2002. Flavonoids and Nitric Oxide Synthase. Journal of Physiology and Pharmacology, 53 (4): 571 – 584.
  • 5. Catalá A, 2006. An Overview of Lipid Peroxidation with Emphasis in Outer Segments of Photoreceptors and the Chemiluminescence Assay. The International Journal of Biochemistry & Cell Biology, 38 (9): 1482-1495.
  • 6. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R, 2003. Protein Carbonyl Groups as Biomarkers of Oxidative Stress. Clinica Chimica Acta, 329 (1-2): 23-38.
  • 7. Berlett BS, Stadtman ER, 1997. Protein Oxidation in Aging, Disease and Oxidative Stress. The Journal of Biological Chemistry, 272 (33): 20313-6.
  • 8. Şahin DY, Elbasan Z, Gür M, Türkoğlu C, Özaltun B, Sümbül Z, Çaylı M, 2012.Relationship Between Oxidative Stress Markers and Cardiac Syndrome. Journal of Clinical and Experimental Investigations , 3 (2): 174-180.
  • 9. Younes M, 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International , 67 (4): 1371 – 1380.
  • 10. Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, Bray TM, Traber MG, 2006. Faster Plasma Vitamin E Disappearance in Smokers is Normalized by Vitamin C Supplementation. Free Radical Biology and Medicine, 40(4):689-97.
  • 11. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 12. Manzocco L, Anese M, Nicoli MC, 1998. Antioxidant Properties of Tea Extracts as Affected by Processing. Lebensmittel-Wissenschaft Und -Technologie 31: 694-698.
  • 13. Chung MY, Park HJ, Manautou JE, Koo SI, Bruno RS, 2012. Green Tea Extract Protects Against Nonalcoholic Steatohepatitis in Ob/Ob Mice by Decreasing Oxidative and Nitrative Stress Responses Induced by Proinflammatory Enzymes. The Journal of Nutritional Biochemistry, 23 (4): 361-7.
  • 14. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W, 1999. ESR Study on the Structure-Antioxidant Activity Relationship of Tea Catechins and Their Epimers. Biochimica et Biophysica Acta, 1427 (1): 13-23.
  • 15. Cabrera C, Artacho R, Giménez R, 2006. Beneficial Effects of Green Tea. Journal of the American College of Nutrition, 25 (2): 79-99.
  • 16. Ji SJ, Han DH, Kim JH, 2006. Inhibition of Proliferation and Induction of Apoptosis by EGCG in Human Osteogenic Sarcoma (HOS) Cells. Archives of Pharmacal Research, 29: 363.
  • 17. Manzocco L, Anese M, Nicoli MC, 1998. Antioxidant Properties of Tea Extracts as Affected by Processing. Lebensmittel-Wissenschaft Und -Technologie, 31: 694-698.
  • 18. Zhou B, Pan J, Dai F, Zhao CY, Zhang LP, Wei QY, Yang L, Zheng RL, Liu ZL, 2004. Redifferentiation of Human Hepatoma Cells Induced by Green Tea Polyphenols. Research on Chemical Intermediates, 30:627–636.
  • 19. Zhishen, J, Mengcheng T, Jianming W, 1999. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals Food Chemistry. 64: 555-559.
  • 20. Benzie, IF, Strain JJ, 1999. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods in Enzymology. No:299, pp. 15-27.
  • 21. Krzysztof B, 2005. Free radicals in chemistry, biology and medicine: contribution of radiation chemistry. NUKLEONIKA, 50 (3): 67−76
  • 22. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 23. Crespy V ,Williamson G, 2004. A Review of the Health Effects of Green Tea Catechins in Vivo Animal Models. The Journal of Nutrition.134 (12): 3431S-3440S
  • 24. Valcic S, Timmermann BN, Alberts DS, Wächter GA, Krutzsch M, Wymer J, Guillén JM, 1996. Inhibitory Effect of Six Green Tea Catechins And Caffeine on the Growth of Four Selected Human Tumor Cell Lines. Anti-Cancer Drugs, 7 (4): 461-468.
  • 25. Hirofumi T, Takao K, Toshio M, Sousuke T, Miki Y, Mitsuaki S, Mari YM, Koji Y, 2001. Identification of An Inhibitor for Interleukin 4-Induced Ε Germline Transcription and Antigen-Specific Ige Production in Vivo. Biochemical And Biophysical Research Communications, No: 280, pp. 53-60.
  • 26. Bo Zhou, Li Yang, Zhong-Li Liu, 2004. Striktinin as An Efficient Antioxidant in Lipid Peroxidation. Chemistry and Physics of Lipids, 131(1):15-25.
  • 27. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 28. Stangl V, Lorenz M, Stangl K, 2006. The Role of Tea and Tea Flavonoids in Cardiovascular Health. Molecular Nutrition Food Research., No: 50, pp. 218-228.
  • 29. He M, Min JW, Kong WL, He XH, Li JX, Peng BW, 2016. A Review on the Pharmacological Effects of Vitexin and Isovitexin. Fitoterapia , 115: 74-85.
  • 30. ACD/Chemsketch, 2017, Version 2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada.
  • 31. Dr. Duke's Phytochemical and Ethnobotanical Databases, 1992-2016, Agricultural Research Service, U.S. Department of Agriculture.
  • 32. Hehre WJ, 2003. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA.
  • 33. Stewart JJP, 2008. J Mol Model. 14 (6): 499–535; Stewart JJP, 2009. J. Mol. Model. 15: 765–805
  • 34. Axel DB, 1993. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics 98, 1372.
  • 35. C. Lee, W. Yang, R. G. Parr, 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785-789.
  • 36. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, J. T., Kudin, Burant, K. N. J. C. Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Daniels, A. D., Farkas, O., Rabuck, A. D., Raghavachari, K., Ortiz, J. V.: “Gaussian 09”, Gaussian, Inc., 2009. Version 6. Pittsburgh PA. Todd A. Keith, John M. Millam, 2016. GaussView. Semichem Inc.Shawnee Mission. KS. Roy Dennington.37. Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC, 2017. Antioxidant Activity of Quercetin and Its Glucosides From Propolis: A Theoretical Study. Scientific Reports, 7(1): 7543.
  • 38. Lu L, Qiang M, Li F, Zhang H, Zhang S, 2014. Theoretical İnvestigation on the Antioxidative Activity of Anthocyanidins: A DFT/ B3LYP Study. Dyes And Pigments, 103: 175–182.
  • 39. Nenadis N, Sigalas MP, 2011. A DFT Study on the Radical Scavenging Potential of Selected Natural 3′,4′-Dihydroxy Aurones. Food Research International, 44 (1): 114-120.
  • 40. De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F, 2007. Electrophilicity and Nucleophilicity Index for Radicals. Organic Letters, No: 14, pp. 2721-2724.
  • 41. Ji L, Zeng QX, Wei ML, Jin LW, Zhong QY, 2006. Koopmans Theorem for Large Molecular Systems within Density Functional Theory. The Journal of Physical Chemistry, 110 (43): 12005–12009.
  • 42. Urbaniak A, Molski M, Szelag M, 2012. Quantum-Chemical Calculations of the Antioxidant Properties of Trans-P-Coumaric Acid and Trans-Sinapinic Acid.Computational Methods in Science And Technology, 18 (2): 117-128.

Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi

Yıl 2018, Cilt: 8 Sayı: 4, 55 - 65, 30.12.2018
https://doi.org/10.21597/jist.420354

Öz

Güçlü bir antioksidan olan yeşil çay, antimutajenik, antikanserojen ve antibakteriyel özellikler taşır. Yeşil
çayın çoklu bileşenleri arasında flavonoidler, yeşilçayın antioksidan aktivitelerine büyük ölçüde katkıda bulunur.
Bu araştırmada yeşil çay bitkisinin içinde bulunan moleküllerden OH grubu fazla olan gallokateşin, kaempferinin,
striktinin, theaflavin ve isoviteksin molekülleri üzerinde durulmuştur. İncelenen bileşiklerin antioksidatif
kapasitesini analiz etmek için üç ana antioksidan mekanizma HAT, SET-PT ve SPLET incelenmiştir. Hesaplamaları
Gaussian09 programı kullanılarak M062X/6–311+Gdp, moleküler tanımlayıcılar için ise HF/6-31++Gdp metotları
ile gerçekleştirilmiştir. Yapılan çalışmada gaz fazında SPLET mekanizması etanol fazında ise SET-PT mekanizması
tercih edilmiştir. Antioksidan aktivite sırası gaz fazında gallokateşin>kaempferitin>isoviteksin>striktinin>theaflavin
şeklinde iken etanol fazında ise isoviteksin>striktinin>gallokateşin>kaempferitin>theaflavin’dir.

Kaynakça

  • 1. Özcan O, Erdal H, Çakırca G, Yönden Z, 2015. Oksidatif Stres ve Hücre İçi Lipit , Protein ve DNA Yapıları Üzerine Etkileri. Journal of Clinical and Experimental Investigations , 6 (3): 331-336
  • 2. Reed DJ, 1995. Toxicity of Oxygen İn Molecular And Cellular Mechanisms of Toxicity. CRC Press, pp. 35–68, Boca Raton- USA.
  • 3. Younes M, 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International , 67 (4): 1371 – 1380.
  • 4. Olszanecki R, Gȩbska A, Kozlovski VI, Gryglewski RJ, 2002. Flavonoids and Nitric Oxide Synthase. Journal of Physiology and Pharmacology, 53 (4): 571 – 584.
  • 5. Catalá A, 2006. An Overview of Lipid Peroxidation with Emphasis in Outer Segments of Photoreceptors and the Chemiluminescence Assay. The International Journal of Biochemistry & Cell Biology, 38 (9): 1482-1495.
  • 6. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R, 2003. Protein Carbonyl Groups as Biomarkers of Oxidative Stress. Clinica Chimica Acta, 329 (1-2): 23-38.
  • 7. Berlett BS, Stadtman ER, 1997. Protein Oxidation in Aging, Disease and Oxidative Stress. The Journal of Biological Chemistry, 272 (33): 20313-6.
  • 8. Şahin DY, Elbasan Z, Gür M, Türkoğlu C, Özaltun B, Sümbül Z, Çaylı M, 2012.Relationship Between Oxidative Stress Markers and Cardiac Syndrome. Journal of Clinical and Experimental Investigations , 3 (2): 174-180.
  • 9. Younes M, 1999. Free Radicals and Reactive Oxygen Species, in Toxicology, ‘By H. Marguardt, Mechanisms of Antioxidant and Pro-Oxidant Effects of Lipoic Acid in the Diabetic and Nondiabetic Kidney’. Kidney International , 67 (4): 1371 – 1380.
  • 10. Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, Bray TM, Traber MG, 2006. Faster Plasma Vitamin E Disappearance in Smokers is Normalized by Vitamin C Supplementation. Free Radical Biology and Medicine, 40(4):689-97.
  • 11. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 12. Manzocco L, Anese M, Nicoli MC, 1998. Antioxidant Properties of Tea Extracts as Affected by Processing. Lebensmittel-Wissenschaft Und -Technologie 31: 694-698.
  • 13. Chung MY, Park HJ, Manautou JE, Koo SI, Bruno RS, 2012. Green Tea Extract Protects Against Nonalcoholic Steatohepatitis in Ob/Ob Mice by Decreasing Oxidative and Nitrative Stress Responses Induced by Proinflammatory Enzymes. The Journal of Nutritional Biochemistry, 23 (4): 361-7.
  • 14. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W, 1999. ESR Study on the Structure-Antioxidant Activity Relationship of Tea Catechins and Their Epimers. Biochimica et Biophysica Acta, 1427 (1): 13-23.
  • 15. Cabrera C, Artacho R, Giménez R, 2006. Beneficial Effects of Green Tea. Journal of the American College of Nutrition, 25 (2): 79-99.
  • 16. Ji SJ, Han DH, Kim JH, 2006. Inhibition of Proliferation and Induction of Apoptosis by EGCG in Human Osteogenic Sarcoma (HOS) Cells. Archives of Pharmacal Research, 29: 363.
  • 17. Manzocco L, Anese M, Nicoli MC, 1998. Antioxidant Properties of Tea Extracts as Affected by Processing. Lebensmittel-Wissenschaft Und -Technologie, 31: 694-698.
  • 18. Zhou B, Pan J, Dai F, Zhao CY, Zhang LP, Wei QY, Yang L, Zheng RL, Liu ZL, 2004. Redifferentiation of Human Hepatoma Cells Induced by Green Tea Polyphenols. Research on Chemical Intermediates, 30:627–636.
  • 19. Zhishen, J, Mengcheng T, Jianming W, 1999. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals Food Chemistry. 64: 555-559.
  • 20. Benzie, IF, Strain JJ, 1999. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods in Enzymology. No:299, pp. 15-27.
  • 21. Krzysztof B, 2005. Free radicals in chemistry, biology and medicine: contribution of radiation chemistry. NUKLEONIKA, 50 (3): 67−76
  • 22. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 23. Crespy V ,Williamson G, 2004. A Review of the Health Effects of Green Tea Catechins in Vivo Animal Models. The Journal of Nutrition.134 (12): 3431S-3440S
  • 24. Valcic S, Timmermann BN, Alberts DS, Wächter GA, Krutzsch M, Wymer J, Guillén JM, 1996. Inhibitory Effect of Six Green Tea Catechins And Caffeine on the Growth of Four Selected Human Tumor Cell Lines. Anti-Cancer Drugs, 7 (4): 461-468.
  • 25. Hirofumi T, Takao K, Toshio M, Sousuke T, Miki Y, Mitsuaki S, Mari YM, Koji Y, 2001. Identification of An Inhibitor for Interleukin 4-Induced Ε Germline Transcription and Antigen-Specific Ige Production in Vivo. Biochemical And Biophysical Research Communications, No: 280, pp. 53-60.
  • 26. Bo Zhou, Li Yang, Zhong-Li Liu, 2004. Striktinin as An Efficient Antioxidant in Lipid Peroxidation. Chemistry and Physics of Lipids, 131(1):15-25.
  • 27. Higdon JV, Frei B, 2003. Tea Catechins and Polyphenols: Health Effects, Metabolism and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1):89-143.
  • 28. Stangl V, Lorenz M, Stangl K, 2006. The Role of Tea and Tea Flavonoids in Cardiovascular Health. Molecular Nutrition Food Research., No: 50, pp. 218-228.
  • 29. He M, Min JW, Kong WL, He XH, Li JX, Peng BW, 2016. A Review on the Pharmacological Effects of Vitexin and Isovitexin. Fitoterapia , 115: 74-85.
  • 30. ACD/Chemsketch, 2017, Version 2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada.
  • 31. Dr. Duke's Phytochemical and Ethnobotanical Databases, 1992-2016, Agricultural Research Service, U.S. Department of Agriculture.
  • 32. Hehre WJ, 2003. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA.
  • 33. Stewart JJP, 2008. J Mol Model. 14 (6): 499–535; Stewart JJP, 2009. J. Mol. Model. 15: 765–805
  • 34. Axel DB, 1993. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics 98, 1372.
  • 35. C. Lee, W. Yang, R. G. Parr, 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785-789.
  • 36. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, J. T., Kudin, Burant, K. N. J. C. Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Daniels, A. D., Farkas, O., Rabuck, A. D., Raghavachari, K., Ortiz, J. V.: “Gaussian 09”, Gaussian, Inc., 2009. Version 6. Pittsburgh PA. Todd A. Keith, John M. Millam, 2016. GaussView. Semichem Inc.Shawnee Mission. KS. Roy Dennington.37. Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC, 2017. Antioxidant Activity of Quercetin and Its Glucosides From Propolis: A Theoretical Study. Scientific Reports, 7(1): 7543.
  • 38. Lu L, Qiang M, Li F, Zhang H, Zhang S, 2014. Theoretical İnvestigation on the Antioxidative Activity of Anthocyanidins: A DFT/ B3LYP Study. Dyes And Pigments, 103: 175–182.
  • 39. Nenadis N, Sigalas MP, 2011. A DFT Study on the Radical Scavenging Potential of Selected Natural 3′,4′-Dihydroxy Aurones. Food Research International, 44 (1): 114-120.
  • 40. De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F, 2007. Electrophilicity and Nucleophilicity Index for Radicals. Organic Letters, No: 14, pp. 2721-2724.
  • 41. Ji L, Zeng QX, Wei ML, Jin LW, Zhong QY, 2006. Koopmans Theorem for Large Molecular Systems within Density Functional Theory. The Journal of Physical Chemistry, 110 (43): 12005–12009.
  • 42. Urbaniak A, Molski M, Szelag M, 2012. Quantum-Chemical Calculations of the Antioxidant Properties of Trans-P-Coumaric Acid and Trans-Sinapinic Acid.Computational Methods in Science And Technology, 18 (2): 117-128.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Biyomühendislik / Bioengineering
Yazarlar

Vildan Enisoğlu Atalay 0000-0002-9830-9158

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 2 Mayıs 2018
Kabul Tarihi 14 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 4

Kaynak Göster

APA Enisoğlu Atalay, V. (2018). Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi. Journal of the Institute of Science and Technology, 8(4), 55-65. https://doi.org/10.21597/jist.420354
AMA Enisoğlu Atalay V. Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2018;8(4):55-65. doi:10.21597/jist.420354
Chicago Enisoğlu Atalay, Vildan. “Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler Ile İncelenmesi”. Journal of the Institute of Science and Technology 8, sy. 4 (Aralık 2018): 55-65. https://doi.org/10.21597/jist.420354.
EndNote Enisoğlu Atalay V (01 Aralık 2018) Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi. Journal of the Institute of Science and Technology 8 4 55–65.
IEEE V. Enisoğlu Atalay, “Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 4, ss. 55–65, 2018, doi: 10.21597/jist.420354.
ISNAD Enisoğlu Atalay, Vildan. “Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler Ile İncelenmesi”. Journal of the Institute of Science and Technology 8/4 (Aralık 2018), 55-65. https://doi.org/10.21597/jist.420354.
JAMA Enisoğlu Atalay V. Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:55–65.
MLA Enisoğlu Atalay, Vildan. “Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler Ile İncelenmesi”. Journal of the Institute of Science and Technology, c. 8, sy. 4, 2018, ss. 55-65, doi:10.21597/jist.420354.
Vancouver Enisoğlu Atalay V. Yeşil Çaydaki Antioksidan Moleküllerin Özelliklerinin Kuantum Kimyasal Yöntemler ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(4):55-6.