Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Stirring Speed of Zinc Ions Transport Through Bulk Liquid Membrane Containing Di-2-ethylhexyl Phosphoric Acid (D2EHPA) in Kerosene

Yıl 2018, Cilt: 8 Sayı: 4, 67 - 75, 30.12.2018
https://doi.org/10.21597/jist.443011

Öz

In this study, the effect of carrier and donor phase stirring speed on the coupled transport of zinc ions

through bulk liquid membrane was investigated. As carrier, di-2-ethylhexyl phosphoric acid dissolved in kerosene

was used. In experiments, the stirring speed of the donor phase was kept constant at 100 rpm while the stirring

speed of the acceptor phase was changed to 100, 200, 300 and 450 rpm. The results obtained show that zinc ions

in the donor phase decrease mono-exponentially with time, while in the acceptor phase it increases. It has been

determined that the rate of removal of zinc ions increases with increasing stirring speed, but at very high stirring

speeds, the organic solvent is dispersed as emulsion particles in the donor and acceptor phases.

Kaynakça

  • Abdelwahab O, Amin NK, El-Ashtoukhy E-SZ, 2013. Removal of zinc ions from aqueous solution using a cation exchange resin. Chemical Engineering Research and Design, 91:165-173.
  • Asri FÖ, Sönmez S, 2006. Ağır metal toksisitesinin bitki metabolizması üzerine etkileri. Derim, 23 (2) 36-45.
  • Ata ON, 2000. Sfarletin HCl çözeltilerinde çözünmesinin optimizasyonu ve çinkonun destekli sıvı mebran ile taşınım. Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 35 s, Erzurum.
  • Bakalar T, Bugel M, Gadosova L, 2009. Heavy metal removal using reverse osmosis. Acta Montanistica Slovaca, 14 (3): 250-253.
  • Belgemen T, Akar N, 2004. Çinkonun yaşamsal fonksiyonları ve çinko metabolizması ile ilişkili genler. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 57(3).
  • Bingul Z, 2002. Çinko iyonlarının sıvı membran prosesiyle giderimi. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 91 s, Erzurum.
  • Bingul Z, Gurbuz H, Aslan A, Ercisli S, 2016. Biosorption of zinc (II) from aqueous solutions by non living lichen biomass Xanthoria parietina (L.) Th. Fr. Environmental Engineering and Management Journal, Vol.15, No. 12, 2733-2740.
  • Demircioğlu N, Levent M, Kobya M, Topçu N, 2000. The effects of stirring speed on coupled transport of nitrite ions through liquid membranes. Chemical and Biochemical Engineering Quaterly, 14 (4): 109-116.
  • Gonzalez-Munoz MJ, Rodriguez MA, Luque S, Alvarez JR, 2006. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination, 200, (1–3): 742-744.
  • Gupta VK, Al Khayat M, Minocha AK, Kumar P, 2005. Zinc(II) selective sensors based on dibenzo-24-crown-8 in PVC matrix. Analytica Chimica Acta, 532, 153-158.
  • Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39 (4): 610-616.
  • İrdemez Ş, Topçu N, Yıldız YŞ, Demircioğlu N, 2006. Effect of organic solvent type on the removal of nitrate ion using liquid membrane technique. Stochatic Environmental Research and Risk Assessment, 21 (2): 175-181.
  • Jamali M, Ghaderian SM, Karimi N, 2014. Effects of cadmium and zinc on growth and metal accumulation of mathiola flavida boiss. Environmental Engineering and Management Journal, 13, 2937-2944. Cryogenics and Iotopes Separation, 19 (1) 45-54.
  • Kartal G, Güven A, Kahvecioğlu Ö, Timur S, 2004. Metallerin Çevresel Etkileri-II. Metalurji Dergisi, 137, 46-51. Leon G, Guzman MA, 2008. Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study. Desalination, 223, 330-336.
  • Leon L, Leon G, Senent J, Guzman MA, 2016. Kinetic stıdy of copper(II) simultaneous extraction/stripping from aqueous solutions by liquid membranes using coupled transport mechanisms. Metal, 6, 212.
  • Ma M, He D, Wang Q, Xie Q, 2001. Kinetics of europium(III) transport through a liquid membrane containing HEH(EHP) in kerosene. Talanta, 55, 1109-1117.
  • Maret W, Sandstead HH, 2006. Zinc requirements and the risks and benefits of zinc supplementation, Journal of Trace Elements in Medicine and Biology, 20, 3-18.
  • Martins JE, Pordo R, Boaventura AR, 2004. Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: Effect of temperature, pH and water hardness. Water Research, 38, (3): 693-699.
  • Mirea CM, Diaconu I, Ruse E, Serban EA, Clej DD, Popa GA, Popa DF, Nechifor G, 2016. The removal of heavy metals using the bulk liquid membrane technique. Progress of Cryogenics and Isotopes Seperation, 19 (1): 45-54.
  • Noble RD, Way JD, 1989. Liquid membrane technology an overwiew. In Liquid Membrane Technology and Applications, ACS Syms No:347, Washington, DC.
  • Oleinikova M, Gonzalez C, Valiente M, Munoz M, (1999). Selective transport of zinc through activated composite membranes containing di(2-ethylhexyk)dithiophosohoric acid as a carrier. Polyhedron, 18: 3353-3359.
  • Pourkhanali K, Saleh M, Khayati G, 2018. Performance evaluation of bulk liquid membrane technique on p-nitrphenol removal from aqueous solution. Chemical and Biochemical Engineering Quaterly, 32 (1): 83-90.
  • Sağlam N, Cihangir N, 1995. Ağır metallerin biyolojik süreçlerle biyosorpsiyonu çalışmaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 11, 157-161.
  • Shek TH, Ma A, Lee VKC, Gordon M, 2009. Kinetics of zinc ions removal from effluents using ion exchange resin. Chemical Engineering Journal, 146 (1): 63-70.
  • SKKY, 2004. Su Kirliliği Kontrolü Yönetmeliği, T.C. Resmi Gazete, 25687, 31.12.2004.
  • Senthilkumar R, Ramalingam S, Abhinaya RV, Dinesh KS, Vidhyadevi T, Sivanesan S, 2012. Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. The Canadian Journal of Chemical Engineering, 90, 973-982.
  • Vahidi E, Raschi F, Moradkhani D, 2009. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Minerals Engineering, 22, 204-206.
  • Yamini Y, Chaloosi M, Ebrahimzadeh H, 2002. Highly selective and efficient transport of bismuth in bulk liquid membranes containing Cyanex 301. Separation and Purification Technology, 28: 43-51.
  • Yulizar Y, Ohashi A, Nagatani H, Watarai H, 2000. Kinetic study of Ni(II) and Zn(II) complexation. with a pyridylazo extractant by a centrifugal liquid membrane method. Analytica Chimica Acta, 419, 107-114.
  • Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R, 2018. Kinetic study of uranium transport via a bulk liquid membrane containing Alamine 336 as carrier. Journal of Radionalytical and Nuclear Chemistry, 316: 247-255.

Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi

Yıl 2018, Cilt: 8 Sayı: 4, 67 - 75, 30.12.2018
https://doi.org/10.21597/jist.443011

Öz

Bu çalışmada, sıvı membran prosesiyle çinko iyonlarının çift yönlü taşınımına taşıyıcı ve verici faz

karıştırma hızlarının etkisi incelenmiştir. Taşıyıcı olarak kerozende çözünmüş di-2-etilhekzil fosforik asit

kullanılmıştır. Denemelerde verici faz karıştırma hızı 100 rpm’de sabit tutulurken yakalayıcı faz karıştırma hızı 100,

200, 300 ve 450 rpm olarak değiştirilmiştir. Elde edilen sonuçlar çalışılan karıştırma hızlarında verici fazdaki çinko

iyonlarının zamanla tek üssel logaritmik eğri verecek şekilde azaldığını, yakalayıcı fazda ise arttığını göstermiştir.

Denemelerde karıştırma hızının artmasıyla çinko iyonlarının giderim hızının arttığı, ancak çok yüksek karıştırma

hızlarında organik çözücünün verici ve yakalayıcı fazlar içerisinde emülsiyon zerrecikleri şeklinde dağıldığı tespit

edilmiştir.

Kaynakça

  • Abdelwahab O, Amin NK, El-Ashtoukhy E-SZ, 2013. Removal of zinc ions from aqueous solution using a cation exchange resin. Chemical Engineering Research and Design, 91:165-173.
  • Asri FÖ, Sönmez S, 2006. Ağır metal toksisitesinin bitki metabolizması üzerine etkileri. Derim, 23 (2) 36-45.
  • Ata ON, 2000. Sfarletin HCl çözeltilerinde çözünmesinin optimizasyonu ve çinkonun destekli sıvı mebran ile taşınım. Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 35 s, Erzurum.
  • Bakalar T, Bugel M, Gadosova L, 2009. Heavy metal removal using reverse osmosis. Acta Montanistica Slovaca, 14 (3): 250-253.
  • Belgemen T, Akar N, 2004. Çinkonun yaşamsal fonksiyonları ve çinko metabolizması ile ilişkili genler. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 57(3).
  • Bingul Z, 2002. Çinko iyonlarının sıvı membran prosesiyle giderimi. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, 91 s, Erzurum.
  • Bingul Z, Gurbuz H, Aslan A, Ercisli S, 2016. Biosorption of zinc (II) from aqueous solutions by non living lichen biomass Xanthoria parietina (L.) Th. Fr. Environmental Engineering and Management Journal, Vol.15, No. 12, 2733-2740.
  • Demircioğlu N, Levent M, Kobya M, Topçu N, 2000. The effects of stirring speed on coupled transport of nitrite ions through liquid membranes. Chemical and Biochemical Engineering Quaterly, 14 (4): 109-116.
  • Gonzalez-Munoz MJ, Rodriguez MA, Luque S, Alvarez JR, 2006. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination, 200, (1–3): 742-744.
  • Gupta VK, Al Khayat M, Minocha AK, Kumar P, 2005. Zinc(II) selective sensors based on dibenzo-24-crown-8 in PVC matrix. Analytica Chimica Acta, 532, 153-158.
  • Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39 (4): 610-616.
  • İrdemez Ş, Topçu N, Yıldız YŞ, Demircioğlu N, 2006. Effect of organic solvent type on the removal of nitrate ion using liquid membrane technique. Stochatic Environmental Research and Risk Assessment, 21 (2): 175-181.
  • Jamali M, Ghaderian SM, Karimi N, 2014. Effects of cadmium and zinc on growth and metal accumulation of mathiola flavida boiss. Environmental Engineering and Management Journal, 13, 2937-2944. Cryogenics and Iotopes Separation, 19 (1) 45-54.
  • Kartal G, Güven A, Kahvecioğlu Ö, Timur S, 2004. Metallerin Çevresel Etkileri-II. Metalurji Dergisi, 137, 46-51. Leon G, Guzman MA, 2008. Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study. Desalination, 223, 330-336.
  • Leon L, Leon G, Senent J, Guzman MA, 2016. Kinetic stıdy of copper(II) simultaneous extraction/stripping from aqueous solutions by liquid membranes using coupled transport mechanisms. Metal, 6, 212.
  • Ma M, He D, Wang Q, Xie Q, 2001. Kinetics of europium(III) transport through a liquid membrane containing HEH(EHP) in kerosene. Talanta, 55, 1109-1117.
  • Maret W, Sandstead HH, 2006. Zinc requirements and the risks and benefits of zinc supplementation, Journal of Trace Elements in Medicine and Biology, 20, 3-18.
  • Martins JE, Pordo R, Boaventura AR, 2004. Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: Effect of temperature, pH and water hardness. Water Research, 38, (3): 693-699.
  • Mirea CM, Diaconu I, Ruse E, Serban EA, Clej DD, Popa GA, Popa DF, Nechifor G, 2016. The removal of heavy metals using the bulk liquid membrane technique. Progress of Cryogenics and Isotopes Seperation, 19 (1): 45-54.
  • Noble RD, Way JD, 1989. Liquid membrane technology an overwiew. In Liquid Membrane Technology and Applications, ACS Syms No:347, Washington, DC.
  • Oleinikova M, Gonzalez C, Valiente M, Munoz M, (1999). Selective transport of zinc through activated composite membranes containing di(2-ethylhexyk)dithiophosohoric acid as a carrier. Polyhedron, 18: 3353-3359.
  • Pourkhanali K, Saleh M, Khayati G, 2018. Performance evaluation of bulk liquid membrane technique on p-nitrphenol removal from aqueous solution. Chemical and Biochemical Engineering Quaterly, 32 (1): 83-90.
  • Sağlam N, Cihangir N, 1995. Ağır metallerin biyolojik süreçlerle biyosorpsiyonu çalışmaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 11, 157-161.
  • Shek TH, Ma A, Lee VKC, Gordon M, 2009. Kinetics of zinc ions removal from effluents using ion exchange resin. Chemical Engineering Journal, 146 (1): 63-70.
  • SKKY, 2004. Su Kirliliği Kontrolü Yönetmeliği, T.C. Resmi Gazete, 25687, 31.12.2004.
  • Senthilkumar R, Ramalingam S, Abhinaya RV, Dinesh KS, Vidhyadevi T, Sivanesan S, 2012. Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. The Canadian Journal of Chemical Engineering, 90, 973-982.
  • Vahidi E, Raschi F, Moradkhani D, 2009. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Minerals Engineering, 22, 204-206.
  • Yamini Y, Chaloosi M, Ebrahimzadeh H, 2002. Highly selective and efficient transport of bismuth in bulk liquid membranes containing Cyanex 301. Separation and Purification Technology, 28: 43-51.
  • Yulizar Y, Ohashi A, Nagatani H, Watarai H, 2000. Kinetic study of Ni(II) and Zn(II) complexation. with a pyridylazo extractant by a centrifugal liquid membrane method. Analytica Chimica Acta, 419, 107-114.
  • Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R, 2018. Kinetic study of uranium transport via a bulk liquid membrane containing Alamine 336 as carrier. Journal of Radionalytical and Nuclear Chemistry, 316: 247-255.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Züleyha Bingül 0000-0003-2472-9077

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 12 Temmuz 2018
Kabul Tarihi 26 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 4

Kaynak Göster

APA Bingül, Z. (2018). Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi. Journal of the Institute of Science and Technology, 8(4), 67-75. https://doi.org/10.21597/jist.443011
AMA Bingül Z. Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2018;8(4):67-75. doi:10.21597/jist.443011
Chicago Bingül, Züleyha. “Kerozende Di-2-Etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi”. Journal of the Institute of Science and Technology 8, sy. 4 (Aralık 2018): 67-75. https://doi.org/10.21597/jist.443011.
EndNote Bingül Z (01 Aralık 2018) Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi. Journal of the Institute of Science and Technology 8 4 67–75.
IEEE Z. Bingül, “Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., c. 8, sy. 4, ss. 67–75, 2018, doi: 10.21597/jist.443011.
ISNAD Bingül, Züleyha. “Kerozende Di-2-Etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi”. Journal of the Institute of Science and Technology 8/4 (Aralık 2018), 67-75. https://doi.org/10.21597/jist.443011.
JAMA Bingül Z. Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:67–75.
MLA Bingül, Züleyha. “Kerozende Di-2-Etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi”. Journal of the Institute of Science and Technology, c. 8, sy. 4, 2018, ss. 67-75, doi:10.21597/jist.443011.
Vancouver Bingül Z. Kerozende Di-2-etilhekzil Fosforik Asit İçeren Bulk Sıvı Membranla Çinko İyonlarının Taşınımına Karıştırma Hızının Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(4):67-75.