Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Electrochemical Behavior of Amide Substituted Thienyl Pyrrole Carbon Nanomaterial Composite Structure

Yıl 2019, Cilt: 9 Sayı: 1, 177 - 186, 01.03.2019
https://doi.org/10.21597/jist.430607

Öz

In recent years, conductive polymers have attracted attention as conductive organic materials due to their flexible structure, processability at room temperature and electrochromic properties. However, the high-contrast electrochromic conductive polymers are limited in the literature. Amide substituted dithienylpyrrole (SNS) derivatives has advantage compared to conductive polymers in the literature. In these materials, the N- (2,5-di (thiophen-2-yl) -1H-pyrrol-1-yl) benzamide (PBA) molecule has remarkabled for its high contrast and stability. In this study, the working electrode surface which is indium-tin oxide coated glass electrode (ITO) was modified with reduced graphene oxide (rGO). After the modification, the spectroelectrochemical properties of the formed pPBA film on the surface of the working electrode which increases the conductivity by rGO coating were investigated. The obtained results show that the stability, optical contrast and charge density of the formed conductive polymer film on the rGO-coated surface, are significantly increased as desired.

Kaynakça

  • Ak M, Tanyeli C, Akhmedov IM and Toppare L, 2008. Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene. Thin Solid Films, 516(12): 4334–41.
  • Atılgan N, Cihaner A, Önal AM, 2010. Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. Reactive and Functional Polymers, 70(4): 244–50.
  • Ayranci R, Ak M, Karakus M, Cetisli H, 2016. The effect of the monomer feed ratio and applied potential on copolymerization: investigation of the copolymer formation of ferrocene-functionalized metallopolymer and EDOT. Designed Monomers and Polymers, 19(6): 545–52.
  • Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, Sen F, 2017. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures & Nano-Objects. 11: 13–9.
  • Ayranci R, Soganci T, Guzel M, Demirkol D, Ak M, Timur S, 2015. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. Royal Society of Chemistry. 5(65): 52543–9.
  • Belen’kii LI, Gromova GP, Smirnov VI, 2008. Reactions of 2,5-di(2-thienyl)pyrroles. Chemistry of Heterocyclic Compounds 44(9): 1092–100.
  • Botas C, Álvarez P, Blanco P, Granda M, Blanco C, Santamaría R, Romasanta LJ, Verdejo R, López-Manchado MA, Menéndez R, 2013. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65: 156–64.
  • Camurlu P, Karagoren N, 2013. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers. 73(6): 847–53.
  • Göker S, Hizalan G, Ileri M, Hacioglu SO, Toppare L, 2015. The effect of the different donor units on fluorescent conjugated polymers containing 2,1,3-benzooxadiazole as the acceptor unit. Journal of Electroanalytical Chemistry. 751: 80–9.
  • Gup R, Giziroglu E, 2006. Metal complexes and solvent extraction properties of isonitrosoacetophenone 2-aminobenzoylhydrazone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 65(3-4): 719–26.
  • Guzel M, Soganci T, Akgun M, Ak M, 2015. Carbazole Functionalized Star Shaped Triazine Monomer and Its Electrochromic Applications and Its Electrochromic Applications. Journal of Electrochemical Society. 162(8): 527–34.
  • Huang Y, Qin Y, Zhou Y, Niu H, Yu Z, Dong JY, 2010. Polypropylene/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler−Natta Polymerization. Chemistry of Materials. American Chemical Society 22(13): 4096–102.
  • Just PE, Chane-ching KI, Lacaze PC, 2002. Synthesis of 2 , 5-di ( 2-thienyl ) -1H-pyrrole N-linked with conjugated bridges. 58: 3467–72.
  • Kesavan S, Revin SB, John SA, 2014. Potentiodynamic formation of gold nanoparticles film on glassy carbon electrode using aminophenyl diazonium cations grafted gold nanoparticles: Determination of histamine {H2} receptor antagonist. Electrochimica Acta. 119: 214–24.
  • Koyuncu S, Zafer C, Sefer E, Koyuncu FB, Demic S, Kaya I, Ozdemir E, Icli S, 2009. A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: Electrochemical, optical and electrochromic properties. Synthetic Metals 159: 2013–21.
  • Lengkeek NA, Harrowfield JM, Koutsantonis GA, 2010. Synthesis and electropolymerization of N-(4′-carboxyphenyl)-2,5-di(2″-thienyl)pyrrole. Synthetic Metals. 160(1–2): 72–5.
  • Ngamchuea K, Eloul S, Tschulik K, Compton RG, 2014. Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?. Journal of Solid State Electrochemistry. Springer Berlin Heidelberg 18(12): 3251–7.
  • Olivier Y, Niedzialek D, Lemaur V, Pisula W, Müllen K, Koldemir U, Reynolds JR, Lazzaroni R, Cornil J, Beljonne D, 2014. 25th anniversary article: High-mobility hole and electron transport conjugated polymers: How structure defines function. Advanced Materials 26(14): 2119–36.
  • Pandule S, Oprea A, Barsan N, Weimar U, Persaud K, 2014. Synthesis of poly-[2,5-di(thiophen-2-yl)-1H-pyrrole] derivatives and the effects of the substituents on their properties. Synthetic Metals. Elsevier B.V. 196: 158–65.
  • Park S, Ruoff RS, 2009. Chemical methods for the production of graphenes. Nature Nanotechnology 4(4): 217–24.
  • Ruiz JP, Dharia JR, Reynolds JR, Buckley LJ, 1992. Repeat unit symmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly[1,4-bis(2-thienyl)phenylenes]. Macromolecules, 25(2): 849–60.
  • Sefer E, Koyuncu FB, Oguzhan E, Koyuncu S, 2010. A new near-infrared switchable electrochromic polymer and its device application. Journal of Polymer Science Part A: Polymer Chemistry, 48(20): 4419–27.
  • Soganci T, Ak M, Giziroglu E, Söyleyici HC, 2016. Smart window application of a new hydrazide type SNS derivative. RSC Advance, 6(3): 1744–9.
  • Soganci T, Ak M, Ocal S, Karakus M, 2015. Ferrocenyldithiophosphonate Containing Conducting Polymers and Theirs Electrochromic Application. Journal of Inorganic and Organometallic Polymers and Materials, 25 (5): 1011–1018
  • Soganci T, Soyleyici HC, Ak M, 2016. A soluble and fluorescent new type thienylpyrrole based conjugated polymer: Optical, electrical and electrochemical properties. Physical Chemistry Chemical Physics, 18, 14401-14407
  • Soganci T, Soyleyici HC, Ak M, Cetisli H, 2016. An Amide Substituted Dithienylpyrrole Based Copolymer: Its Electrochromic Properties. Journal of The Electrochemical Society, 163(2): H59–66.
  • Soganci T, Soyleyici S, Soyleyici HC, Ak M, 2017. High Contrast Electrochromic Polymer and Copolymer Materials Based on Amide-Substituted Poly(Dithienyl Pyrrole). Journal of The Electrochemical Society, 164 (2 ): H11–20.
  • Song J, Wang X, Chang CT, Song J, Wang X, Chang CT, 2014. Preparation and Characterization of Graphene Oxide. Journal of Nanomaterials, 2014: 1–6.
  • Song N, Yang J, Ding P, Tang S, Liu Y, Shi L, 2014. Effect of Covalent-Functionalized Graphene Oxide with Polymer and Reactive Compatibilization on Thermal Properties of Maleic Anhydride Grafted Polypropylene. Industrial & Engineering Chemistry Research, 53(51): 19951–60.
  • Uduma YA, Hizliates CG, Ergün Y, Toppare L, 2015. Electrosynthesis and characterization of an electrochromic material containing biscarbazole-oxadiazole units and its application in an electrochromic device. Thin Solid Films, 595: 61–7.
  • Wang Q, Du Y, Feng Q, Huang F, Lu K, Liu J, Wei Q, 2013. Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. Journal of Applied Polymer Science, 128(2): 1152–7.
  • Wu TY, Li JL, 2016. Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Advance, 6(19): 15988–98.
  • Yavuz A, Bezgin B, Önal AM, 2009. Synthesis and characterization of a new conducting polymer based on 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-phthalonitrile. Journal of Applied Polymer Science. Wiley Subscription Services, Inc., A Wiley Company, 114(5): 2685–90.
  • Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y, 2014. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 237: 411–20.

Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi

Yıl 2019, Cilt: 9 Sayı: 1, 177 - 186, 01.03.2019
https://doi.org/10.21597/jist.430607

Öz

Son yıllarda, iletken polimerler, esnek yapılı, oda sıcaklığında işlenebilir ve elektrokromik özellikleri sebebiyle iletken organik malzemeler olarak dikkat çekmektedir. Fakat, yüksek kontrastlı elektrokromik iletken polimerler literatürde sınırlıdır. Amid sübstitiye ditiyenil pirol (SNS) türevleri mevcut literatürdeki iletken polimerlere göre bu bakımdan oldukça avantajlıdır. Bu yapılar içerisinde sentezlemiş olduğumuz N-(2,5-di(tiyofen-2-yil)-1H-pirol-1-yil)benzamid (PBA) molekülü yüksek kontrast ve dayanıklılığı ile dikkat çekmektedir. Yapılan bu çalışmada, çalışma elektrotu olarak kullanılan İndiyum-Kalay Oksit kaplı cam elektrot (ITO) yüzeyi indirgenmiş grafen oksit (rGO) ile modifiye edilerek kullanılmıştır. Yapılan modifikasyon ile rGO kaplanarak iletkenliği arttırılan elektrot yüzeyinde oluşturulan pPBA filmine ait spektroelektrokimyasal özellikler incelenmiştir. Elde edilen bulgular, rGO kaplı yüzeyde oluşturulan iletken polimer filmine ait kararlılığın, optik kontrastın ve yük yoğunluğunun istenildiği gibi önemli oranda arttırıldığını göstermektedir.

Kaynakça

  • Ak M, Tanyeli C, Akhmedov IM and Toppare L, 2008. Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene. Thin Solid Films, 516(12): 4334–41.
  • Atılgan N, Cihaner A, Önal AM, 2010. Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. Reactive and Functional Polymers, 70(4): 244–50.
  • Ayranci R, Ak M, Karakus M, Cetisli H, 2016. The effect of the monomer feed ratio and applied potential on copolymerization: investigation of the copolymer formation of ferrocene-functionalized metallopolymer and EDOT. Designed Monomers and Polymers, 19(6): 545–52.
  • Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, Sen F, 2017. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures & Nano-Objects. 11: 13–9.
  • Ayranci R, Soganci T, Guzel M, Demirkol D, Ak M, Timur S, 2015. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. Royal Society of Chemistry. 5(65): 52543–9.
  • Belen’kii LI, Gromova GP, Smirnov VI, 2008. Reactions of 2,5-di(2-thienyl)pyrroles. Chemistry of Heterocyclic Compounds 44(9): 1092–100.
  • Botas C, Álvarez P, Blanco P, Granda M, Blanco C, Santamaría R, Romasanta LJ, Verdejo R, López-Manchado MA, Menéndez R, 2013. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65: 156–64.
  • Camurlu P, Karagoren N, 2013. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers. 73(6): 847–53.
  • Göker S, Hizalan G, Ileri M, Hacioglu SO, Toppare L, 2015. The effect of the different donor units on fluorescent conjugated polymers containing 2,1,3-benzooxadiazole as the acceptor unit. Journal of Electroanalytical Chemistry. 751: 80–9.
  • Gup R, Giziroglu E, 2006. Metal complexes and solvent extraction properties of isonitrosoacetophenone 2-aminobenzoylhydrazone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 65(3-4): 719–26.
  • Guzel M, Soganci T, Akgun M, Ak M, 2015. Carbazole Functionalized Star Shaped Triazine Monomer and Its Electrochromic Applications and Its Electrochromic Applications. Journal of Electrochemical Society. 162(8): 527–34.
  • Huang Y, Qin Y, Zhou Y, Niu H, Yu Z, Dong JY, 2010. Polypropylene/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler−Natta Polymerization. Chemistry of Materials. American Chemical Society 22(13): 4096–102.
  • Just PE, Chane-ching KI, Lacaze PC, 2002. Synthesis of 2 , 5-di ( 2-thienyl ) -1H-pyrrole N-linked with conjugated bridges. 58: 3467–72.
  • Kesavan S, Revin SB, John SA, 2014. Potentiodynamic formation of gold nanoparticles film on glassy carbon electrode using aminophenyl diazonium cations grafted gold nanoparticles: Determination of histamine {H2} receptor antagonist. Electrochimica Acta. 119: 214–24.
  • Koyuncu S, Zafer C, Sefer E, Koyuncu FB, Demic S, Kaya I, Ozdemir E, Icli S, 2009. A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: Electrochemical, optical and electrochromic properties. Synthetic Metals 159: 2013–21.
  • Lengkeek NA, Harrowfield JM, Koutsantonis GA, 2010. Synthesis and electropolymerization of N-(4′-carboxyphenyl)-2,5-di(2″-thienyl)pyrrole. Synthetic Metals. 160(1–2): 72–5.
  • Ngamchuea K, Eloul S, Tschulik K, Compton RG, 2014. Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?. Journal of Solid State Electrochemistry. Springer Berlin Heidelberg 18(12): 3251–7.
  • Olivier Y, Niedzialek D, Lemaur V, Pisula W, Müllen K, Koldemir U, Reynolds JR, Lazzaroni R, Cornil J, Beljonne D, 2014. 25th anniversary article: High-mobility hole and electron transport conjugated polymers: How structure defines function. Advanced Materials 26(14): 2119–36.
  • Pandule S, Oprea A, Barsan N, Weimar U, Persaud K, 2014. Synthesis of poly-[2,5-di(thiophen-2-yl)-1H-pyrrole] derivatives and the effects of the substituents on their properties. Synthetic Metals. Elsevier B.V. 196: 158–65.
  • Park S, Ruoff RS, 2009. Chemical methods for the production of graphenes. Nature Nanotechnology 4(4): 217–24.
  • Ruiz JP, Dharia JR, Reynolds JR, Buckley LJ, 1992. Repeat unit symmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly[1,4-bis(2-thienyl)phenylenes]. Macromolecules, 25(2): 849–60.
  • Sefer E, Koyuncu FB, Oguzhan E, Koyuncu S, 2010. A new near-infrared switchable electrochromic polymer and its device application. Journal of Polymer Science Part A: Polymer Chemistry, 48(20): 4419–27.
  • Soganci T, Ak M, Giziroglu E, Söyleyici HC, 2016. Smart window application of a new hydrazide type SNS derivative. RSC Advance, 6(3): 1744–9.
  • Soganci T, Ak M, Ocal S, Karakus M, 2015. Ferrocenyldithiophosphonate Containing Conducting Polymers and Theirs Electrochromic Application. Journal of Inorganic and Organometallic Polymers and Materials, 25 (5): 1011–1018
  • Soganci T, Soyleyici HC, Ak M, 2016. A soluble and fluorescent new type thienylpyrrole based conjugated polymer: Optical, electrical and electrochemical properties. Physical Chemistry Chemical Physics, 18, 14401-14407
  • Soganci T, Soyleyici HC, Ak M, Cetisli H, 2016. An Amide Substituted Dithienylpyrrole Based Copolymer: Its Electrochromic Properties. Journal of The Electrochemical Society, 163(2): H59–66.
  • Soganci T, Soyleyici S, Soyleyici HC, Ak M, 2017. High Contrast Electrochromic Polymer and Copolymer Materials Based on Amide-Substituted Poly(Dithienyl Pyrrole). Journal of The Electrochemical Society, 164 (2 ): H11–20.
  • Song J, Wang X, Chang CT, Song J, Wang X, Chang CT, 2014. Preparation and Characterization of Graphene Oxide. Journal of Nanomaterials, 2014: 1–6.
  • Song N, Yang J, Ding P, Tang S, Liu Y, Shi L, 2014. Effect of Covalent-Functionalized Graphene Oxide with Polymer and Reactive Compatibilization on Thermal Properties of Maleic Anhydride Grafted Polypropylene. Industrial & Engineering Chemistry Research, 53(51): 19951–60.
  • Uduma YA, Hizliates CG, Ergün Y, Toppare L, 2015. Electrosynthesis and characterization of an electrochromic material containing biscarbazole-oxadiazole units and its application in an electrochromic device. Thin Solid Films, 595: 61–7.
  • Wang Q, Du Y, Feng Q, Huang F, Lu K, Liu J, Wei Q, 2013. Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. Journal of Applied Polymer Science, 128(2): 1152–7.
  • Wu TY, Li JL, 2016. Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Advance, 6(19): 15988–98.
  • Yavuz A, Bezgin B, Önal AM, 2009. Synthesis and characterization of a new conducting polymer based on 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-phthalonitrile. Journal of Applied Polymer Science. Wiley Subscription Services, Inc., A Wiley Company, 114(5): 2685–90.
  • Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y, 2014. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 237: 411–20.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Hakan Can Söyleyici 0000-0001-6258-2577

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 4 Haziran 2018
Kabul Tarihi 27 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Söyleyici, H. C. (2019). Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi. Journal of the Institute of Science and Technology, 9(1), 177-186. https://doi.org/10.21597/jist.430607
AMA Söyleyici HC. Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2019;9(1):177-186. doi:10.21597/jist.430607
Chicago Söyleyici, Hakan Can. “Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi”. Journal of the Institute of Science and Technology 9, sy. 1 (Mart 2019): 177-86. https://doi.org/10.21597/jist.430607.
EndNote Söyleyici HC (01 Mart 2019) Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi. Journal of the Institute of Science and Technology 9 1 177–186.
IEEE H. C. Söyleyici, “Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 1, ss. 177–186, 2019, doi: 10.21597/jist.430607.
ISNAD Söyleyici, Hakan Can. “Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi”. Journal of the Institute of Science and Technology 9/1 (Mart 2019), 177-186. https://doi.org/10.21597/jist.430607.
JAMA Söyleyici HC. Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:177–186.
MLA Söyleyici, Hakan Can. “Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi”. Journal of the Institute of Science and Technology, c. 9, sy. 1, 2019, ss. 177-86, doi:10.21597/jist.430607.
Vancouver Söyleyici HC. Amid Sübstitüye Tiyenil Pirol/Karbon Nanomateryal Kompozit Yapısının Elektrokimyasal Davranışlarının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):177-86.