Derleme
BibTex RIS Kaynak Göster

Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı

Yıl 2019, Cilt: 9 Sayı: 1, 265 - 271, 01.03.2019
https://doi.org/10.21597/jist.448743

Öz

Bu
çalışma, günümüzde enerji sistemlerinin daha yüksek kapasiteli ve performanslı
üretilmesini sağlayabilecek ters opal metodunun piller üzerindeki kapasite
artışını göstermektedir. Ters opal metodu ile yeniden şarj-edilebilir pil
elektrotlarının kapasitelerinin yaklaşık 2.5 kat arttığı ve bu artış
sağlanırken daha küçük boyutlu ve daha ince katmanlı elektrotların
hazırlanabildiği görülmüştür. Ters opal metodu ile elektrotlar homojen 3D
boşluklu bir yapıya sahiptir. Bu metot ile küresel boşluklu yapıda daha yüksek
yüzey alanına sahip ve kullanılan opallerin çaplarına bağlı olarak nanometre
seviyesinde elektrot tabakaları oluşturmaktadır. Ters opal metodunda üretilen
nanometre seviyesindeki kalınlığa sahip bu yapılar ayrıca iyon transferini
hızlandırarak pillerin daha hızlı şarj edilmesi imkânı da sağlamaktadır.

Kaynakça

  • Alvaro B, Emmanuel C, Serguei G, Marta I, Sajeev J, Stephen WL, Cefe L, Francisco M, Hernan M, Jessica PM, Geoffrey AO, Ovidiu T, Henry MvD, 2000. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405: 437–440.
  • Armstrong E, O'Sullivan M, O'Connell J, Holmes JD, and O'Dwyer C, 2015. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of Electrochemical Society, 162: D605-D612.
  • Demirel S., 2017. Development of Ti-based Anode Materials for Li-ion and Na-ion Batteries. Ph. D. thesis. Inonu University.
  • Elizabeth R, Ayan G, Peter K, Michael TH, and James NC, 2013. Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes. Langmuir, 24: 906–912.
  • Guangyuan Z, Qianfan Z, Judy JC, Yuan Y, Weiyang L, Zhi WS, and Yi C, 2013. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Letters, 13: 1265–1270.
  • Hai YX, Hao W, Zhi QS, Yao WW, Hui Y, Masahiro Y, 2004. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochimica Acta, 49: 349-353.
  • Hengguo W, Delong M, Xiaolei H, Yun H, and Xinbo Z, 2012. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2: 701.
  • Huigang Z and Paul VB, 2012. Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Letters, 12: 2778–2783.
  • Huigang Z, Xindi Y, Paul VB, 2011. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotechnology, 6: 277–281.
  • Hyejung K, Minho S, Mi-Hee P, Jaephil C, 2010. A Critical Size of Silicon Nano‐Anodes for Lithium Rechargeable Batteries. Angewandte Chemie, 49: 2146-2149.
  • McNulty D, Geaney H, Armstrong E, and O'Dwyer C, 2016. High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes, Journal of Materials Chemistry A, DOI: 10.1039/c6ta00338a.
  • Pallavidino L, Santamaria DR, Geobaldo F, Balestreri A, Bajoni D, Galli M, Andreani LC, Ricciardi C, Celasco E, Quaglio M, Giorgis F, 2006. Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 352: 1425-1429.
  • Qifeng Z, Hua X, Haibo D, Ling B, Zhongde M, Zhuoying X, Yuanjin Z, Zhongze G, 2013. Preparation of conducting polymer inverse opals and its application as ammonia sensor Colloids and Surfaces A: Physicochemical and Engineering Aspects, 4: 59-63.
  • Ruhl T, Spahn P, Hermann C, Jamois C, Hess O, 2006. Double‐Inverse‐Opal Photonic Crystals: The Route to Photonic Bandgap Switching. Advanced Functional Materials, 16: 885-890.
  • Wakihara M, Yamamoto O, 2007. Lithium Ion Batteries: Fundamentals and Performance. Tokyo: Wiley.
  • Yanguang L, Bing T, and Yiying W, 2008. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters, 8: 265–270.

Enhancement Performance of Rechargeable Batteries via Homogenous 3D Nano Cavity Structure

Yıl 2019, Cilt: 9 Sayı: 1, 265 - 271, 01.03.2019
https://doi.org/10.21597/jist.448743

Öz

This
study shows the capacity improvement of the battery by inverse opal method,
which can provides to produce much effective energy systems with higher
capacity and performance. It has been seen that the capacity of the
rechargeable battery electrodes is increased by about 2.5 times via inverse
opal method, which method also provides smaller and thinner layered electrode
production. The electrodes have homogeneous 3D cavity structure via inverse
opal method. The spherical cavity structure has higher surface area and what
forming electrode layers at the nanometer levels depending on the diameters of
the used opals. These structures also provide speed up ion transfers and faster
charging of the batteries by nanometer level of thickness via inverse opal
method.

Kaynakça

  • Alvaro B, Emmanuel C, Serguei G, Marta I, Sajeev J, Stephen WL, Cefe L, Francisco M, Hernan M, Jessica PM, Geoffrey AO, Ovidiu T, Henry MvD, 2000. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405: 437–440.
  • Armstrong E, O'Sullivan M, O'Connell J, Holmes JD, and O'Dwyer C, 2015. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of Electrochemical Society, 162: D605-D612.
  • Demirel S., 2017. Development of Ti-based Anode Materials for Li-ion and Na-ion Batteries. Ph. D. thesis. Inonu University.
  • Elizabeth R, Ayan G, Peter K, Michael TH, and James NC, 2013. Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes. Langmuir, 24: 906–912.
  • Guangyuan Z, Qianfan Z, Judy JC, Yuan Y, Weiyang L, Zhi WS, and Yi C, 2013. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Letters, 13: 1265–1270.
  • Hai YX, Hao W, Zhi QS, Yao WW, Hui Y, Masahiro Y, 2004. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochimica Acta, 49: 349-353.
  • Hengguo W, Delong M, Xiaolei H, Yun H, and Xinbo Z, 2012. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2: 701.
  • Huigang Z and Paul VB, 2012. Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Letters, 12: 2778–2783.
  • Huigang Z, Xindi Y, Paul VB, 2011. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotechnology, 6: 277–281.
  • Hyejung K, Minho S, Mi-Hee P, Jaephil C, 2010. A Critical Size of Silicon Nano‐Anodes for Lithium Rechargeable Batteries. Angewandte Chemie, 49: 2146-2149.
  • McNulty D, Geaney H, Armstrong E, and O'Dwyer C, 2016. High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes, Journal of Materials Chemistry A, DOI: 10.1039/c6ta00338a.
  • Pallavidino L, Santamaria DR, Geobaldo F, Balestreri A, Bajoni D, Galli M, Andreani LC, Ricciardi C, Celasco E, Quaglio M, Giorgis F, 2006. Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 352: 1425-1429.
  • Qifeng Z, Hua X, Haibo D, Ling B, Zhongde M, Zhuoying X, Yuanjin Z, Zhongze G, 2013. Preparation of conducting polymer inverse opals and its application as ammonia sensor Colloids and Surfaces A: Physicochemical and Engineering Aspects, 4: 59-63.
  • Ruhl T, Spahn P, Hermann C, Jamois C, Hess O, 2006. Double‐Inverse‐Opal Photonic Crystals: The Route to Photonic Bandgap Switching. Advanced Functional Materials, 16: 885-890.
  • Wakihara M, Yamamoto O, 2007. Lithium Ion Batteries: Fundamentals and Performance. Tokyo: Wiley.
  • Yanguang L, Bing T, and Yiying W, 2008. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters, 8: 265–270.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Serkan Demirel 0000-0003-1158-4956

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 28 Temmuz 2018
Kabul Tarihi 9 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Demirel, S. (2019). Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 265-271. https://doi.org/10.21597/jist.448743
AMA Demirel S. Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı. Iğdır Üniv. Fen Bil Enst. Der. Mart 2019;9(1):265-271. doi:10.21597/jist.448743
Chicago Demirel, Serkan. “Homojen 3D Nano Boşluklu Yapılar Ile Şarj Edilebilir Pillerde Performans Artışı”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9, sy. 1 (Mart 2019): 265-71. https://doi.org/10.21597/jist.448743.
EndNote Demirel S (01 Mart 2019) Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 1 265–271.
IEEE S. Demirel, “Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 1, ss. 265–271, 2019, doi: 10.21597/jist.448743.
ISNAD Demirel, Serkan. “Homojen 3D Nano Boşluklu Yapılar Ile Şarj Edilebilir Pillerde Performans Artışı”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9/1 (Mart 2019), 265-271. https://doi.org/10.21597/jist.448743.
JAMA Demirel S. Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:265–271.
MLA Demirel, Serkan. “Homojen 3D Nano Boşluklu Yapılar Ile Şarj Edilebilir Pillerde Performans Artışı”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, sy. 1, 2019, ss. 265-71, doi:10.21597/jist.448743.
Vancouver Demirel S. Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):265-71.