Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of pressure on phase transformation in liquid Cu cluster at different cooling rates: a molecular dynamics study

Yıl 2019, Cilt: 9 Sayı: 4, 2009 - 2018, 01.12.2019

Öz

In this study, structural changes in
the liquid phase Cu cluster structure under different pressure values for 2x1013
K/s and 2x1012 K/s cooling rates were determined by molecular
dynamic simulation method. Inter atomic interactions for the NVT statistical
ensemble were calculated using the Quantum Sutton-Chen (K-SC) potential
function. Structural transitions during the cooling process from liquid phase
were determined by using changes in cohesive energy (EC) and radial
distribution function (RDF). The Cu cluster structure was found to
transformation directly from the liquid-amorphous phase to the fcc
(surface-centered cubic structure) unit cell crystalline phase during the
cooling processes. Increased pressure values were found to be effective on
phase transformation times.

Kaynakça

  • Binns C, 2001. Nanoclusters deposited on surfaces. Surf. Sci. Rep., 44: 1-49.
  • Böyükata M, Belchiorb JC, 2008. Structural and Energetic Analysis of Copper Clusters: MD Study of Cun (n = 2 -45). J. Braz. Chem. Soc., 19(5): 884-893.
  • Cagin T, Dereli G, Uludogan M, Tomak M, 1999. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59(4): 3468-3472.
  • Caprion D, Schober HR, 2003. Computer Simulation of Liquid and Amorphous Selenium. J. of Non-Crys. Solids, 326: 369-373.
  • Chang WJ, 2003. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectronic Engineering, 65: 239-246.
  • Daw MS, Hatcher RD, 1985. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56: 697-699.
  • Finnis MW, Sinclair JE, 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50: 45-55.
  • Grujicic M. Dang P, 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201: 194-204.
  • Gui J, Cui Y, Xu S, Wang Q, Ye Y, Xiang M, Wang R, 1994. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J. Phys.: Condens. Matter, 6: 4601-4614.
  • Hendy SC, Schebarchov D, Awasthi A, 2009. Molecular dynamics simulations of nanoparticles. Int. J. Nanotechnol., 6(3): 274-287.
  • Jaque P, Toro-Labbe´ A, 2002. Characterization of copper clusters through the use of density functional theory reactivity descriptors. J. Chem. Phys., 117: 3208-3218.
  • Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R, 2001. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature (London), 412: 169-172.
  • Kart SÖ, Erbay A, Kılıç H, Çagın T, Tomak M, 2008. Molecular dynamics study of Cu-Pd order alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1): 41-45.
  • Kazanc S, 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science 38; 405–409.
  • Li TT, He C, Zhang WX, Cheng M, 2018. Structural and melting properties of Cu-Ni clusters: A simulation study. Journal of Alloys and Compounds, 752: 76-84.
  • Lin JS, Ju SP, Lee WJ, 2005. Mechanical behavior of gold nanowires with a multishell helical structure. Physical Review B, 72: 085448.
  • Louail L, Maouche D, Roumili A, Hachemi A, 2005. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 91: 17-20.
  • Marque´s LA, Pelaz L, Aboy M, Lopez P, Barbolla J, 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33: 92-105.
  • Mogck S, Kooi BJ, De Hosson JTM, 2004. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Materialia, 52: 4651–4658.
  • Parrinello M, Rahman A, 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45: 1196-1201.
  • Parrinello M, Rahman A, 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52: 7182-7190.
  • Poater A, Duran M, Jaque P, Labbe´ AT, Sola` M, 2006. Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1-9). J. Phys. Chem. B, 110: 6526-6536.
  • Rigby M, Smith EB, Wakeham WA, Maitland GC, 1986. The forces between molecular. Clarendon Press, 144, New York.
  • Shao Y, Clapp PC, Rifkin JA, 1996. Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A: 1477-1489.
  • Sondon T, Saul A, Guevara J, 2007. Magnetic properties of Co–Rh and Ni–Rh nanowires. Phys. B, 298: 352-355.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61: 139-146.
  • Tolpin KA, Bachurin VI, Yurasova VE, 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 273: 76-79.
  • Qi WH, Huang BY, Wang MP, Liu FX, Yin ZM, 2008. Freezing of silver cluster and nanowire: A comparison study by molecular dynamics simulation. Computational Material Science, 42: 517-524.
  • Wang L, Peng C, Gong J, 2010. Multishell structure formation in Ni nanowire under uniaxial strain along <001> crystallographic: A molecular dynamics simulation. Physica B, 405: 1721-1724.
  • Valden M, Lai X, Goodman DW, 1998. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281: 1647-1650.
  • Voter AF, Chen SP, 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82: 175.
  • Zhang XJ, Chen CL, 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 169: 40-50.

Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması

Yıl 2019, Cilt: 9 Sayı: 4, 2009 - 2018, 01.12.2019

Öz

Bu çalışmada, sıvı fazdaki Cu kümeli yapısının
(cluster) 2x1013 K/s ve 2x1012 K/s soğutma hızları için
farklı basınç değerleri altında yapısal değişimlerini belirlemek için moleküler
dinamik benzetimi kullanıldı. NVT istatistiksel topluluğuna sahip moleküler
dinamik hücresindeki atomlar arası etkileşmeleri hesaplamak için Kuantum
Sutton-Chen (K-SC) potansiyel fonksiyonu kullanıldı. Sıvı fazdan soğutma
işlemleri esnasında meydana gelen yapısal geçişler kohesif enerjideki (Ec)
değişimler ve radyal dağılım fonksiyonu (RDF) kullanılarak belirlenmeye
çalışıldı. Cu kümeli yapısının soğutma işlemleri esnasında sıvı-amorf fazdan,
fcc (yüzey merkezli kübik yapı) birim hücreli kristal faza doğrudan geçiş
yaptığı tespit edildi. Artan basınç değerlerinin faz geçiş süreleri üzerinde
etkili olduğu görüldü.  

Kaynakça

  • Binns C, 2001. Nanoclusters deposited on surfaces. Surf. Sci. Rep., 44: 1-49.
  • Böyükata M, Belchiorb JC, 2008. Structural and Energetic Analysis of Copper Clusters: MD Study of Cun (n = 2 -45). J. Braz. Chem. Soc., 19(5): 884-893.
  • Cagin T, Dereli G, Uludogan M, Tomak M, 1999. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59(4): 3468-3472.
  • Caprion D, Schober HR, 2003. Computer Simulation of Liquid and Amorphous Selenium. J. of Non-Crys. Solids, 326: 369-373.
  • Chang WJ, 2003. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectronic Engineering, 65: 239-246.
  • Daw MS, Hatcher RD, 1985. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56: 697-699.
  • Finnis MW, Sinclair JE, 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50: 45-55.
  • Grujicic M. Dang P, 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201: 194-204.
  • Gui J, Cui Y, Xu S, Wang Q, Ye Y, Xiang M, Wang R, 1994. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J. Phys.: Condens. Matter, 6: 4601-4614.
  • Hendy SC, Schebarchov D, Awasthi A, 2009. Molecular dynamics simulations of nanoparticles. Int. J. Nanotechnol., 6(3): 274-287.
  • Jaque P, Toro-Labbe´ A, 2002. Characterization of copper clusters through the use of density functional theory reactivity descriptors. J. Chem. Phys., 117: 3208-3218.
  • Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R, 2001. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature (London), 412: 169-172.
  • Kart SÖ, Erbay A, Kılıç H, Çagın T, Tomak M, 2008. Molecular dynamics study of Cu-Pd order alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1): 41-45.
  • Kazanc S, 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science 38; 405–409.
  • Li TT, He C, Zhang WX, Cheng M, 2018. Structural and melting properties of Cu-Ni clusters: A simulation study. Journal of Alloys and Compounds, 752: 76-84.
  • Lin JS, Ju SP, Lee WJ, 2005. Mechanical behavior of gold nanowires with a multishell helical structure. Physical Review B, 72: 085448.
  • Louail L, Maouche D, Roumili A, Hachemi A, 2005. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 91: 17-20.
  • Marque´s LA, Pelaz L, Aboy M, Lopez P, Barbolla J, 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33: 92-105.
  • Mogck S, Kooi BJ, De Hosson JTM, 2004. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Materialia, 52: 4651–4658.
  • Parrinello M, Rahman A, 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45: 1196-1201.
  • Parrinello M, Rahman A, 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52: 7182-7190.
  • Poater A, Duran M, Jaque P, Labbe´ AT, Sola` M, 2006. Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1-9). J. Phys. Chem. B, 110: 6526-6536.
  • Rigby M, Smith EB, Wakeham WA, Maitland GC, 1986. The forces between molecular. Clarendon Press, 144, New York.
  • Shao Y, Clapp PC, Rifkin JA, 1996. Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A: 1477-1489.
  • Sondon T, Saul A, Guevara J, 2007. Magnetic properties of Co–Rh and Ni–Rh nanowires. Phys. B, 298: 352-355.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61: 139-146.
  • Tolpin KA, Bachurin VI, Yurasova VE, 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 273: 76-79.
  • Qi WH, Huang BY, Wang MP, Liu FX, Yin ZM, 2008. Freezing of silver cluster and nanowire: A comparison study by molecular dynamics simulation. Computational Material Science, 42: 517-524.
  • Wang L, Peng C, Gong J, 2010. Multishell structure formation in Ni nanowire under uniaxial strain along <001> crystallographic: A molecular dynamics simulation. Physica B, 405: 1721-1724.
  • Valden M, Lai X, Goodman DW, 1998. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281: 1647-1650.
  • Voter AF, Chen SP, 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82: 175.
  • Zhang XJ, Chen CL, 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 169: 40-50.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 27 Şubat 2019
Kabul Tarihi 15 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster

APA Kazanç, S. (2019). Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması. Journal of the Institute of Science and Technology, 9(4), 2009-2018.
AMA Kazanç S. Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2019;9(4):2009-2018.
Chicago Kazanç, Sefa. “Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology 9, sy. 4 (Aralık 2019): 2009-18.
EndNote Kazanç S (01 Aralık 2019) Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması. Journal of the Institute of Science and Technology 9 4 2009–2018.
IEEE S. Kazanç, “Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 4, ss. 2009–2018, 2019.
ISNAD Kazanç, Sefa. “Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology 9/4 (Aralık 2019), 2009-2018.
JAMA Kazanç S. Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:2009–2018.
MLA Kazanç, Sefa. “Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology, c. 9, sy. 4, 2019, ss. 2009-18.
Vancouver Kazanç S. Farklı Hızlarda Soğutulan Sıvı Cu Kümeli Yapısındaki Faz Dönüşümüne Basıncın Etkisi: Moleküler Dinamik Çalışması. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(4):2009-18.